1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_div_x12(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_div_x12(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33 const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
34 const float32x4_t vone = vmovq_n_f32(1.0f);
35
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37
38 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39
40 for (; n >= 12 * sizeof(float); n -= 12 * sizeof(float)) {
41 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44
45 // General structure of the algorithm:
46 // / exp(x) / (1 + exp(x)) if x <= 0
47 // f[x] :=
48 // \ 1 - f[-x] if x >= 0
49 //
50 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
51 // then replace result with 1 - f[-z] if x >= 0.
52 const float32x4_t vz0123 = vabsq_f32(vx0123);
53 const float32x4_t vz4567 = vabsq_f32(vx4567);
54 const float32x4_t vz89AB = vabsq_f32(vx89AB);
55
56 // Compute reduced argument n := round(-z * 64 / log(2)).
57 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
58 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
59 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
60 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
61 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
62 // very end of the algorithm.
63 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
64 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
65 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
66
67 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
68 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
69 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
70 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
71 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
72 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
73 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
74 // and thus the adjusted exponent is not lower than -126.
75 //
76 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
77 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
78 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
79 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
80
81 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
82 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
83 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
84 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
85
86 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
87 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
88 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
89 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
90 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
91 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
92 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
93 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
94 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
95 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
96 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
97 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
98
99 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
100 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
101 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
102 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
103 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
104 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
105 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
106 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
107 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
108
109 // Adjust exponent of the value l fetched from the table to get the final s value.
110 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
111 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
112 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
113
114 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
115 vn0123 = vsubq_f32(vn0123, vmagic_bias);
116 vn4567 = vsubq_f32(vn4567, vmagic_bias);
117 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
118
119 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
120 float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o64);
121 float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o64);
122 float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o64);
123
124 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
125 // P1(t) = 1 + t * (-1 + t * c2)
126 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
127 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
128 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
129
130 vp0123 = vfmsq_f32(vt0123, vp0123, vt0123);
131 vp4567 = vfmsq_f32(vt4567, vp4567, vt4567);
132 vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB);
133
134 // Reconstruct the exp(-z) value:
135 // f = s * (1 + t * (-1 + t * c2))
136 // = s * (1 - t + t * (t * c2))
137 // = s - s * (t - t * (t * c2))
138 // = s - s * p
139 const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123);
140 const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567);
141 const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB);
142
143 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
144 const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
145 const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
146 const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
147
148 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
149 float32x4_t vf0123 = vdivq_f32(vy0123, vd0123);
150 float32x4_t vf4567 = vdivq_f32(vy4567, vd4567);
151 float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB);
152
153 // For inputs below denormal cutoff, replace output with +0.0f.
154 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
155 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
156 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
157 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
158
159 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
160 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
161 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
162 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
163
164 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
165 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
166 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
167
168 vst1q_f32(y, vf0123); y += 4;
169 vst1q_f32(y, vf4567); y += 4;
170 vst1q_f32(y, vf89AB); y += 4;
171 }
172 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
173 const float32x4_t vx = vld1q_f32(x); x += 4;
174
175 // General structure of the algorithm:
176 // / exp(x) / (1 + exp(x)) if x <= 0
177 // f[x] :=
178 // \ 1 - f[-x] if x >= 0
179 //
180 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
181 // then replace result with 1 - f[-z] if x >= 0.
182 const float32x4_t vz = vabsq_f32(vx);
183
184 // Compute reduced argument n := round(-z * 64 / log(2)).
185 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
186 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
187 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
188 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
189 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
190 // very end of the algorithm.
191 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
192
193 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
194 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
195 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
196 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
197 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
198 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
199 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
200 // and thus the adjusted exponent is not lower than -126.
201 //
202 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
203 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
204
205 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
206 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
207 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
208 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
209 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
210 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
211 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
212 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
213 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
214 // Adjust exponent of the value l fetched from the table to get the final s value.
215 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
216
217 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
218 vn = vsubq_f32(vn, vmagic_bias);
219
220 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
221 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
222
223 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
224 // P1(t) = 1 + t * (-1 + t * c2)
225 float32x4_t vp = vmulq_f32(vt, vc2);
226 vp = vfmsq_f32(vt, vp, vt);
227
228 // Reconstruct the exp(-z) value:
229 // f = s * (1 + t * (-1 + t * c2))
230 // = s * (1 - t + t * (t * c2))
231 // = s - s * (t - t * (t * c2))
232 // = s - s * p
233 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
234
235 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
236 const float32x4_t vd = vaddq_f32(vy, vone);
237
238 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
239 float32x4_t vf = vdivq_f32(vy, vd);
240
241 // For inputs below denormal cutoff, replace output with +0.0f.
242 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
243 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
244
245 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
246 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
247 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
248
249 vst1q_f32(y, vf); y += 4;
250 }
251 if XNN_UNLIKELY(n != 0) {
252 const float32x4_t vx = vld1q_f32(x);
253
254 // General structure of the algorithm:
255 // / exp(x) / (1 + exp(x)) if x <= 0
256 // f[x] :=
257 // \ 1 - f[-x] if x >= 0
258 //
259 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
260 // then replace result with 1 - f[-z] if x >= 0.
261 const float32x4_t vz = vabsq_f32(vx);
262
263 // Compute reduced argument n := round(-z * 64 / log(2)).
264 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
265 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
266 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
267 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
268 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
269 // very end of the algorithm.
270 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
271
272 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
273 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
274 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
275 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
276 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
277 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
278 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
279 // and thus the adjusted exponent is not lower than -126.
280 //
281 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
282 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
283
284 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
285 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
286 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
287 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
288 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
289 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
290 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
291 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
292 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
293 // Adjust exponent of the value l fetched from the table to get the final s value.
294 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
295
296 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
297 vn = vsubq_f32(vn, vmagic_bias);
298
299 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
300 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
301
302 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
303 // P1(t) = 1 + t * (-1 + t * c2)
304 float32x4_t vp = vmulq_f32(vt, vc2);
305 vp = vfmsq_f32(vt, vp, vt);
306
307 // Reconstruct the exp(-z) value:
308 // f = s * (1 + t * (-1 + t * c2))
309 // = s * (1 - t + t * (t * c2))
310 // = s - s * (t - t * (t * c2))
311 // = s - s * p
312 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
313
314 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
315 const float32x4_t vd = vaddq_f32(vy, vone);
316
317 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
318 float32x4_t vf = vdivq_f32(vy, vd);
319
320 // For inputs below denormal cutoff, replace output with +0.0f.
321 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
322 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
323
324 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
325 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
326 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
327
328 float32x2_t vf_lo = vget_low_f32(vf);
329 if (n & (2 * sizeof(float))) {
330 vst1_f32(y, vf_lo); y += 2;
331 vf_lo = vget_high_f32(vf);
332 }
333 if (n & (1 * sizeof(float))) {
334 vst1_lane_f32(y, vf_lo, 0);
335 }
336 }
337 }
338