• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_div_x12(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_div_x12(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33   const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
34   const float32x4_t vone = vmovq_n_f32(1.0f);
35 
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37 
38   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39 
40   for (; n >= 12 * sizeof(float); n -= 12 * sizeof(float)) {
41     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44 
45     // General structure of the algorithm:
46     //           / exp(x) / (1 + exp(x)) if x <= 0
47     //   f[x] :=
48     //           \ 1 - f[-x] if x >= 0
49     //
50     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
51     // then replace result with 1 - f[-z] if x >= 0.
52     const float32x4_t vz0123 = vabsq_f32(vx0123);
53     const float32x4_t vz4567 = vabsq_f32(vx4567);
54     const float32x4_t vz89AB = vabsq_f32(vx89AB);
55 
56     // Compute reduced argument n := round(-z * 64 / log(2)).
57     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
58     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
59     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
60     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
61     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
62     // very end of the algorithm.
63     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
64     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
65     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
66 
67     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
68     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
69     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
70     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
71     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
72     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
73     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
74     //    and thus the adjusted exponent is not lower than -126.
75     //
76     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
77     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
78     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
79     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
80 
81     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
82     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
83     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
84     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
85 
86     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
87     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
88     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
89     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
90     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
91     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
92     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
93     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
94     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
95     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
96     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
97     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
98 
99     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
100     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
101     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
102     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
103     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
104     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
105     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
106     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
107     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
108 
109     // Adjust exponent of the value l fetched from the table to get the final s value.
110     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
111     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
112     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
113 
114     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
115     vn0123 = vsubq_f32(vn0123, vmagic_bias);
116     vn4567 = vsubq_f32(vn4567, vmagic_bias);
117     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
118 
119     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
120     float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o64);
121     float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o64);
122     float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o64);
123 
124     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
125     //   P1(t) = 1 + t * (-1 + t * c2)
126     float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
127     float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
128     float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
129 
130     vp0123 = vfmsq_f32(vt0123, vp0123, vt0123);
131     vp4567 = vfmsq_f32(vt4567, vp4567, vt4567);
132     vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB);
133 
134     // Reconstruct the exp(-z) value:
135     //   f = s * (1 + t * (-1 + t * c2))
136     //     = s * (1 - t + t * (t * c2))
137     //     = s - s * (t - t * (t * c2))
138     //     = s - s * p
139     const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123);
140     const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567);
141     const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB);
142 
143     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
144     const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
145     const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
146     const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
147 
148     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
149     float32x4_t vf0123 = vdivq_f32(vy0123, vd0123);
150     float32x4_t vf4567 = vdivq_f32(vy4567, vd4567);
151     float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB);
152 
153     // For inputs below denormal cutoff, replace output with +0.0f.
154     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
155     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
156     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
157     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
158 
159     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
160     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
161     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
162     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
163 
164     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
165     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
166     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
167 
168     vst1q_f32(y, vf0123); y += 4;
169     vst1q_f32(y, vf4567); y += 4;
170     vst1q_f32(y, vf89AB); y += 4;
171   }
172   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
173     const float32x4_t vx = vld1q_f32(x); x += 4;
174 
175     // General structure of the algorithm:
176     //           / exp(x) / (1 + exp(x)) if x <= 0
177     //   f[x] :=
178     //           \ 1 - f[-x] if x >= 0
179     //
180     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
181     // then replace result with 1 - f[-z] if x >= 0.
182     const float32x4_t vz = vabsq_f32(vx);
183 
184     // Compute reduced argument n := round(-z * 64 / log(2)).
185     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
186     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
187     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
188     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
189     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
190     // very end of the algorithm.
191     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
192 
193     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
194     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
195     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
196     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
197     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
198     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
199     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
200     //    and thus the adjusted exponent is not lower than -126.
201     //
202     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
203     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
204 
205     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
206     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
207     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
208     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
209     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
210     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
211     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
212     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
213     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
214     // Adjust exponent of the value l fetched from the table to get the final s value.
215     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
216 
217     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
218     vn = vsubq_f32(vn, vmagic_bias);
219 
220     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
221     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
222 
223     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
224     //   P1(t) = 1 + t * (-1 + t * c2)
225     float32x4_t vp = vmulq_f32(vt, vc2);
226     vp = vfmsq_f32(vt, vp, vt);
227 
228     // Reconstruct the exp(-z) value:
229     //   f = s * (1 + t * (-1 + t * c2))
230     //     = s * (1 - t + t * (t * c2))
231     //     = s - s * (t - t * (t * c2))
232     //     = s - s * p
233     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
234 
235     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
236     const float32x4_t vd = vaddq_f32(vy, vone);
237 
238     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
239     float32x4_t vf = vdivq_f32(vy, vd);
240 
241     // For inputs below denormal cutoff, replace output with +0.0f.
242     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
243     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
244 
245     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
246     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
247     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
248 
249     vst1q_f32(y, vf); y += 4;
250   }
251   if XNN_UNLIKELY(n != 0) {
252     const float32x4_t vx = vld1q_f32(x);
253 
254     // General structure of the algorithm:
255     //           / exp(x) / (1 + exp(x)) if x <= 0
256     //   f[x] :=
257     //           \ 1 - f[-x] if x >= 0
258     //
259     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
260     // then replace result with 1 - f[-z] if x >= 0.
261     const float32x4_t vz = vabsq_f32(vx);
262 
263     // Compute reduced argument n := round(-z * 64 / log(2)).
264     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
265     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
266     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
267     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
268     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
269     // very end of the algorithm.
270     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
271 
272     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
273     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
274     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
275     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
276     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
277     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
278     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
279     //    and thus the adjusted exponent is not lower than -126.
280     //
281     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
282     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
283 
284     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
285     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
286     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
287     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
288     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
289     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
290     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
291     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
292     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
293     // Adjust exponent of the value l fetched from the table to get the final s value.
294     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
295 
296     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
297     vn = vsubq_f32(vn, vmagic_bias);
298 
299     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
300     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
301 
302     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
303     //   P1(t) = 1 + t * (-1 + t * c2)
304     float32x4_t vp = vmulq_f32(vt, vc2);
305     vp = vfmsq_f32(vt, vp, vt);
306 
307     // Reconstruct the exp(-z) value:
308     //   f = s * (1 + t * (-1 + t * c2))
309     //     = s * (1 - t + t * (t * c2))
310     //     = s - s * (t - t * (t * c2))
311     //     = s - s * p
312     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
313 
314     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
315     const float32x4_t vd = vaddq_f32(vy, vone);
316 
317     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
318     float32x4_t vf = vdivq_f32(vy, vd);
319 
320     // For inputs below denormal cutoff, replace output with +0.0f.
321     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
322     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
323 
324     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
325     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
326     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
327 
328     float32x2_t vf_lo = vget_low_f32(vf);
329     if (n & (2 * sizeof(float))) {
330       vst1_f32(y, vf_lo); y += 2;
331       vf_lo = vget_high_f32(vf);
332     }
333     if (n & (1 * sizeof(float))) {
334       vst1_lane_f32(y, vf_lo, 0);
335     }
336   }
337 }
338