1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_div_x16(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_div_x16(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33 const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
34 const float32x4_t vone = vmovq_n_f32(1.0f);
35
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37
38 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39
40 for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
41 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44 const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45
46 // General structure of the algorithm:
47 // / exp(x) / (1 + exp(x)) if x <= 0
48 // f[x] :=
49 // \ 1 - f[-x] if x >= 0
50 //
51 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
52 // then replace result with 1 - f[-z] if x >= 0.
53 const float32x4_t vz0123 = vabsq_f32(vx0123);
54 const float32x4_t vz4567 = vabsq_f32(vx4567);
55 const float32x4_t vz89AB = vabsq_f32(vx89AB);
56 const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
57
58 // Compute reduced argument n := round(-z * 64 / log(2)).
59 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
60 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
62 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
63 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
64 // very end of the algorithm.
65 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
66 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
67 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
68 float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x64);
69
70 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
71 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
72 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
73 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
74 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
75 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
76 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
77 // and thus the adjusted exponent is not lower than -126.
78 //
79 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
80 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
81 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
82 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
83 const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
84
85 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
86 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
87 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
88 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
89 const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
90
91 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
92 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
93 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
94 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
95 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
96 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
97 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
98 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
99 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
100 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
101 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
102 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
103 const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
104 const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
105 float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
106 float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
107
108 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
109 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
110 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
111 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
112 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
113 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
114 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
115 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
116 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
117 vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
118 vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
119 const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
120
121 // Adjust exponent of the value l fetched from the table to get the final s value.
122 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
123 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
124 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
125 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
126
127 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
128 vn0123 = vsubq_f32(vn0123, vmagic_bias);
129 vn4567 = vsubq_f32(vn4567, vmagic_bias);
130 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
131 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
132
133 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
134 float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o64);
135 float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o64);
136 float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o64);
137 float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2_o64);
138
139 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
140 // P1(t) = 1 + t * (-1 + t * c2)
141 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
142 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
143 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
144 float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
145
146 vp0123 = vfmsq_f32(vt0123, vp0123, vt0123);
147 vp4567 = vfmsq_f32(vt4567, vp4567, vt4567);
148 vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB);
149 vpCDEF = vfmsq_f32(vtCDEF, vpCDEF, vtCDEF);
150
151 // Reconstruct the exp(-z) value:
152 // f = s * (1 + t * (-1 + t * c2))
153 // = s * (1 - t + t * (t * c2))
154 // = s - s * (t - t * (t * c2))
155 // = s - s * p
156 const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123);
157 const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567);
158 const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB);
159 const float32x4_t vyCDEF = vfmsq_f32(vsCDEF, vsCDEF, vpCDEF);
160
161 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
162 const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
163 const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
164 const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
165 const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
166
167 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
168 float32x4_t vf0123 = vdivq_f32(vy0123, vd0123);
169 float32x4_t vf4567 = vdivq_f32(vy4567, vd4567);
170 float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB);
171 float32x4_t vfCDEF = vdivq_f32(vyCDEF, vdCDEF);
172
173 // For inputs below denormal cutoff, replace output with +0.0f.
174 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
175 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
176 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
177 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
178 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
179
180 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
181 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
182 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
183 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
184 const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
185
186 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
187 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
188 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
189 vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
190
191 vst1q_f32(y, vf0123); y += 4;
192 vst1q_f32(y, vf4567); y += 4;
193 vst1q_f32(y, vf89AB); y += 4;
194 vst1q_f32(y, vfCDEF); y += 4;
195 }
196 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
197 const float32x4_t vx = vld1q_f32(x); x += 4;
198
199 // General structure of the algorithm:
200 // / exp(x) / (1 + exp(x)) if x <= 0
201 // f[x] :=
202 // \ 1 - f[-x] if x >= 0
203 //
204 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
205 // then replace result with 1 - f[-z] if x >= 0.
206 const float32x4_t vz = vabsq_f32(vx);
207
208 // Compute reduced argument n := round(-z * 64 / log(2)).
209 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
210 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
211 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
212 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
213 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
214 // very end of the algorithm.
215 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
216
217 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
218 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
219 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
220 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
221 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
222 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
223 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
224 // and thus the adjusted exponent is not lower than -126.
225 //
226 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
227 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
228
229 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
230 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
231 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
232 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
233 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
234 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
235 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
236 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
237 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
238 // Adjust exponent of the value l fetched from the table to get the final s value.
239 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
240
241 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
242 vn = vsubq_f32(vn, vmagic_bias);
243
244 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
245 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
246
247 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
248 // P1(t) = 1 + t * (-1 + t * c2)
249 float32x4_t vp = vmulq_f32(vt, vc2);
250 vp = vfmsq_f32(vt, vp, vt);
251
252 // Reconstruct the exp(-z) value:
253 // f = s * (1 + t * (-1 + t * c2))
254 // = s * (1 - t + t * (t * c2))
255 // = s - s * (t - t * (t * c2))
256 // = s - s * p
257 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
258
259 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
260 const float32x4_t vd = vaddq_f32(vy, vone);
261
262 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
263 float32x4_t vf = vdivq_f32(vy, vd);
264
265 // For inputs below denormal cutoff, replace output with +0.0f.
266 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
267 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
268
269 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
270 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
271 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
272
273 vst1q_f32(y, vf); y += 4;
274 }
275 if XNN_UNLIKELY(n != 0) {
276 const float32x4_t vx = vld1q_f32(x);
277
278 // General structure of the algorithm:
279 // / exp(x) / (1 + exp(x)) if x <= 0
280 // f[x] :=
281 // \ 1 - f[-x] if x >= 0
282 //
283 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
284 // then replace result with 1 - f[-z] if x >= 0.
285 const float32x4_t vz = vabsq_f32(vx);
286
287 // Compute reduced argument n := round(-z * 64 / log(2)).
288 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
289 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
290 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
291 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
292 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
293 // very end of the algorithm.
294 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
295
296 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
297 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
298 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
299 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
300 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
301 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
302 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
303 // and thus the adjusted exponent is not lower than -126.
304 //
305 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
306 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
307
308 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
309 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
310 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
311 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
312 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
313 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
314 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
315 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
316 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
317 // Adjust exponent of the value l fetched from the table to get the final s value.
318 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
319
320 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
321 vn = vsubq_f32(vn, vmagic_bias);
322
323 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
324 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
325
326 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
327 // P1(t) = 1 + t * (-1 + t * c2)
328 float32x4_t vp = vmulq_f32(vt, vc2);
329 vp = vfmsq_f32(vt, vp, vt);
330
331 // Reconstruct the exp(-z) value:
332 // f = s * (1 + t * (-1 + t * c2))
333 // = s * (1 - t + t * (t * c2))
334 // = s - s * (t - t * (t * c2))
335 // = s - s * p
336 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
337
338 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
339 const float32x4_t vd = vaddq_f32(vy, vone);
340
341 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
342 float32x4_t vf = vdivq_f32(vy, vd);
343
344 // For inputs below denormal cutoff, replace output with +0.0f.
345 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
346 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
347
348 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
349 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
350 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
351
352 float32x2_t vf_lo = vget_low_f32(vf);
353 if (n & (2 * sizeof(float))) {
354 vst1_f32(y, vf_lo); y += 2;
355 vf_lo = vget_high_f32(vf);
356 }
357 if (n & (1 * sizeof(float))) {
358 vst1_lane_f32(y, vf_lo, 0);
359 }
360 }
361 }
362