• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2recps_x16(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2recps_x16(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33   const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
34   const float32x4_t vone = vmovq_n_f32(1.0f);
35 
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37 
38   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39 
40   for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
41     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44     const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45 
46     // General structure of the algorithm:
47     //           / exp(x) / (1 + exp(x)) if x <= 0
48     //   f[x] :=
49     //           \ 1 - f[-x] if x >= 0
50     //
51     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
52     // then replace result with 1 - f[-z] if x >= 0.
53     const float32x4_t vz0123 = vabsq_f32(vx0123);
54     const float32x4_t vz4567 = vabsq_f32(vx4567);
55     const float32x4_t vz89AB = vabsq_f32(vx89AB);
56     const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
57 
58     // Compute reduced argument n := round(-z * 64 / log(2)).
59     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
60     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
62     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
63     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
64     // very end of the algorithm.
65     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
66     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
67     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
68     float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x64);
69 
70     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
71     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
72     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
73     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
74     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
75     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
76     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
77     //    and thus the adjusted exponent is not lower than -126.
78     //
79     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
80     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
81     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
82     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
83     const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
84 
85     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
86     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
87     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
88     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
89     const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
90 
91     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
92     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
93     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
94     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
95     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
96     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
97     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
98     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
99     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
100     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
101     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
102     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
103     const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
104     const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
105     float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
106     float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
107 
108     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
109     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
110     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
111     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
112     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
113     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
114     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
115     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
116     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
117     vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
118     vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
119     const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
120 
121     // Adjust exponent of the value l fetched from the table to get the final s value.
122     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
123     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
124     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
125     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
126 
127     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
128     vn0123 = vsubq_f32(vn0123, vmagic_bias);
129     vn4567 = vsubq_f32(vn4567, vmagic_bias);
130     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
131     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
132 
133     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
134     float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o64);
135     float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o64);
136     float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o64);
137     float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2_o64);
138 
139     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
140     //   P1(t) = 1 + t * (-1 + t * c2)
141     float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
142     float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
143     float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
144     float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
145 
146     vp0123 = vfmsq_f32(vt0123, vp0123, vt0123);
147     vp4567 = vfmsq_f32(vt4567, vp4567, vt4567);
148     vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB);
149     vpCDEF = vfmsq_f32(vtCDEF, vpCDEF, vtCDEF);
150 
151     // Reconstruct the exp(-z) value:
152     //   f = s * (1 + t * (-1 + t * c2))
153     //     = s * (1 - t + t * (t * c2))
154     //     = s - s * (t - t * (t * c2))
155     //     = s - s * p
156     const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123);
157     const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567);
158     const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB);
159     const float32x4_t vyCDEF = vfmsq_f32(vsCDEF, vsCDEF, vpCDEF);
160 
161     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
162     const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
163     const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
164     const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
165     const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
166 
167     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
168     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
169     // Thus the reciprocal of the denominator never overflows.
170     float32x4_t vr0123 = vrecpeq_f32(vd0123);
171     float32x4_t vr4567 = vrecpeq_f32(vd4567);
172     float32x4_t vr89AB = vrecpeq_f32(vd89AB);
173     float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
174 
175     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
176     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
177     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
178     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
179 
180     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
181     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
182     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
183     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
184 
185     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
186     float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
187     float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
188     float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
189     float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
190 
191     // For inputs below denormal cutoff, replace output with +0.0f.
192     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
193     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
194     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
195     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
196     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
197 
198     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
199     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
200     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
201     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
202     const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
203 
204     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
205     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
206     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
207     vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
208 
209     vst1q_f32(y, vf0123); y += 4;
210     vst1q_f32(y, vf4567); y += 4;
211     vst1q_f32(y, vf89AB); y += 4;
212     vst1q_f32(y, vfCDEF); y += 4;
213   }
214   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
215     const float32x4_t vx = vld1q_f32(x); x += 4;
216 
217     // General structure of the algorithm:
218     //           / exp(x) / (1 + exp(x)) if x <= 0
219     //   f[x] :=
220     //           \ 1 - f[-x] if x >= 0
221     //
222     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
223     // then replace result with 1 - f[-z] if x >= 0.
224     const float32x4_t vz = vabsq_f32(vx);
225 
226     // Compute reduced argument n := round(-z * 64 / log(2)).
227     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
228     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
229     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
230     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
231     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
232     // very end of the algorithm.
233     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
234 
235     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
236     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
237     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
238     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
239     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
240     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
241     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
242     //    and thus the adjusted exponent is not lower than -126.
243     //
244     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
245     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
246 
247     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
248     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
249     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
250     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
251     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
252     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
253     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
254     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
255     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
256     // Adjust exponent of the value l fetched from the table to get the final s value.
257     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
258 
259     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
260     vn = vsubq_f32(vn, vmagic_bias);
261 
262     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
263     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
264 
265     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
266     //   P1(t) = 1 + t * (-1 + t * c2)
267     float32x4_t vp = vmulq_f32(vt, vc2);
268     vp = vfmsq_f32(vt, vp, vt);
269 
270     // Reconstruct the exp(-z) value:
271     //   f = s * (1 + t * (-1 + t * c2))
272     //     = s * (1 - t + t * (t * c2))
273     //     = s - s * (t - t * (t * c2))
274     //     = s - s * p
275     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
276 
277     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
278     const float32x4_t vd = vaddq_f32(vy, vone);
279 
280     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
281     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
282     // Thus the reciprocal of the denominator never overflows.
283     float32x4_t vr = vrecpeq_f32(vd);
284 
285     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
286 
287     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
288 
289     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
290     float32x4_t vf = vmulq_f32(vy, vr);
291 
292     // For inputs below denormal cutoff, replace output with +0.0f.
293     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
294     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
295 
296     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
297     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
298     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
299 
300     vst1q_f32(y, vf); y += 4;
301   }
302   if XNN_UNLIKELY(n != 0) {
303     const float32x4_t vx = vld1q_f32(x);
304 
305     // General structure of the algorithm:
306     //           / exp(x) / (1 + exp(x)) if x <= 0
307     //   f[x] :=
308     //           \ 1 - f[-x] if x >= 0
309     //
310     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
311     // then replace result with 1 - f[-z] if x >= 0.
312     const float32x4_t vz = vabsq_f32(vx);
313 
314     // Compute reduced argument n := round(-z * 64 / log(2)).
315     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
316     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
317     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
318     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
319     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
320     // very end of the algorithm.
321     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
322 
323     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
324     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
325     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
326     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
327     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
328     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
329     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
330     //    and thus the adjusted exponent is not lower than -126.
331     //
332     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
333     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
334 
335     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
336     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
337     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
338     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
339     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
340     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
341     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
342     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
343     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
344     // Adjust exponent of the value l fetched from the table to get the final s value.
345     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
346 
347     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
348     vn = vsubq_f32(vn, vmagic_bias);
349 
350     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
351     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
352 
353     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
354     //   P1(t) = 1 + t * (-1 + t * c2)
355     float32x4_t vp = vmulq_f32(vt, vc2);
356     vp = vfmsq_f32(vt, vp, vt);
357 
358     // Reconstruct the exp(-z) value:
359     //   f = s * (1 + t * (-1 + t * c2))
360     //     = s * (1 - t + t * (t * c2))
361     //     = s - s * (t - t * (t * c2))
362     //     = s - s * p
363     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
364 
365     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
366     const float32x4_t vd = vaddq_f32(vy, vone);
367 
368     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
369     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
370     // Thus the reciprocal of the denominator never overflows.
371     float32x4_t vr = vrecpeq_f32(vd);
372 
373     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
374 
375     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
376 
377     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
378     float32x4_t vf = vmulq_f32(vy, vr);
379 
380     // For inputs below denormal cutoff, replace output with +0.0f.
381     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
382     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
383 
384     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
385     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
386     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
387 
388     float32x2_t vf_lo = vget_low_f32(vf);
389     if (n & (2 * sizeof(float))) {
390       vst1_f32(y, vf_lo); y += 2;
391       vf_lo = vget_high_f32(vf);
392     }
393     if (n & (1 * sizeof(float))) {
394       vst1_lane_f32(y, vf_lo, 0);
395     }
396   }
397 }
398