• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2recps_x24(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2recps_x24(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33   const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
34   const float32x4_t vone = vmovq_n_f32(1.0f);
35 
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37 
38   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39 
40   for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
41     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44     const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45     const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
46     const float32x4_t vxKLMN = vld1q_f32(x); x += 4;
47 
48     // General structure of the algorithm:
49     //           / exp(x) / (1 + exp(x)) if x <= 0
50     //   f[x] :=
51     //           \ 1 - f[-x] if x >= 0
52     //
53     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
54     // then replace result with 1 - f[-z] if x >= 0.
55     const float32x4_t vz0123 = vabsq_f32(vx0123);
56     const float32x4_t vz4567 = vabsq_f32(vx4567);
57     const float32x4_t vz89AB = vabsq_f32(vx89AB);
58     const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
59     const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
60     const float32x4_t vzKLMN = vabsq_f32(vxKLMN);
61 
62     // Compute reduced argument n := round(-z * 64 / log(2)).
63     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
64     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
65     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
66     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
67     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
68     // very end of the algorithm.
69     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
70     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
71     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
72     float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x64);
73     float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e_x64);
74     float32x4_t vnKLMN = vfmaq_f32(vmagic_bias, vzKLMN, vminus_log2e_x64);
75 
76     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
77     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
78     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
79     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
80     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
81     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
82     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
83     //    and thus the adjusted exponent is not lower than -126.
84     //
85     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
86     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
87     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
88     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
89     const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
90     const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17);
91     const int32x4_t veKLMN = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnKLMN), vmovq_n_s32(INT32_C(0x3F))), 17);
92 
93     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
94     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
95     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
96     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
97     const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
98     const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
99     const uint64x2_t vidxKLMN = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnKLMN), vindex_mask));
100 
101     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
102     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
103     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
104     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
105     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
106     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
107     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
108     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
109     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
110     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
111     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
112     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
113     const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
114     const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
115     float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
116     float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
117     const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
118     const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
119     float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]);
120     float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]);
121     const uint64_t vidxKL = vgetq_lane_u64(vidxKLMN, 0);
122     const uint64_t vidxMN = vgetq_lane_u64(vidxKLMN, 1);
123     float32x2_t vlKL = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxKL]);
124     float32x2_t vlMN = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxMN]);
125 
126     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
127     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
128     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
129     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
130     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
131     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
132     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
133     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
134     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
135     vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
136     vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
137     const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
138     vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1);
139     vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
140     const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
141     vlKL = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxKL >> 32)], vlKL, 1);
142     vlMN = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxMN >> 32)], vlMN, 1);
143     const float32x4_t vlKLMN = vcombine_f32(vlKL, vlMN);
144 
145     // Adjust exponent of the value l fetched from the table to get the final s value.
146     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
147     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
148     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
149     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
150     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
151     const float32x4_t vsKLMN = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlKLMN), veKLMN));
152 
153     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
154     vn0123 = vsubq_f32(vn0123, vmagic_bias);
155     vn4567 = vsubq_f32(vn4567, vmagic_bias);
156     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
157     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
158     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
159     vnKLMN = vsubq_f32(vnKLMN, vmagic_bias);
160 
161     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
162     float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o64);
163     float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o64);
164     float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o64);
165     float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2_o64);
166     float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2_o64);
167     float32x4_t vtKLMN = vfmaq_f32(vzKLMN, vnKLMN, vln2_o64);
168 
169     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
170     //   P1(t) = 1 + t * (-1 + t * c2)
171     float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
172     float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
173     float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
174     float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
175     float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2);
176     float32x4_t vpKLMN = vmulq_f32(vtKLMN, vc2);
177 
178     vp0123 = vfmsq_f32(vt0123, vp0123, vt0123);
179     vp4567 = vfmsq_f32(vt4567, vp4567, vt4567);
180     vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB);
181     vpCDEF = vfmsq_f32(vtCDEF, vpCDEF, vtCDEF);
182     vpGHIJ = vfmsq_f32(vtGHIJ, vpGHIJ, vtGHIJ);
183     vpKLMN = vfmsq_f32(vtKLMN, vpKLMN, vtKLMN);
184 
185     // Reconstruct the exp(-z) value:
186     //   f = s * (1 + t * (-1 + t * c2))
187     //     = s * (1 - t + t * (t * c2))
188     //     = s - s * (t - t * (t * c2))
189     //     = s - s * p
190     const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123);
191     const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567);
192     const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB);
193     const float32x4_t vyCDEF = vfmsq_f32(vsCDEF, vsCDEF, vpCDEF);
194     const float32x4_t vyGHIJ = vfmsq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
195     const float32x4_t vyKLMN = vfmsq_f32(vsKLMN, vsKLMN, vpKLMN);
196 
197     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
198     const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
199     const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
200     const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
201     const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
202     const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone);
203     const float32x4_t vdKLMN = vaddq_f32(vyKLMN, vone);
204 
205     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
206     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
207     // Thus the reciprocal of the denominator never overflows.
208     float32x4_t vr0123 = vrecpeq_f32(vd0123);
209     float32x4_t vr4567 = vrecpeq_f32(vd4567);
210     float32x4_t vr89AB = vrecpeq_f32(vd89AB);
211     float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
212     float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ);
213     float32x4_t vrKLMN = vrecpeq_f32(vdKLMN);
214 
215     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
216     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
217     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
218     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
219     vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
220     vrKLMN = vmulq_f32(vrKLMN, vrecpsq_f32(vrKLMN, vdKLMN));
221 
222     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
223     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
224     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
225     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
226     vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
227     vrKLMN = vmulq_f32(vrKLMN, vrecpsq_f32(vrKLMN, vdKLMN));
228 
229     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
230     float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
231     float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
232     float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
233     float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
234     float32x4_t vfGHIJ = vmulq_f32(vyGHIJ, vrGHIJ);
235     float32x4_t vfKLMN = vmulq_f32(vyKLMN, vrKLMN);
236 
237     // For inputs below denormal cutoff, replace output with +0.0f.
238     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
239     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
240     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
241     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
242     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
243     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
244     vfKLMN = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfKLMN), vcagtq_f32(vxKLMN, vdenorm_cutoff)));
245 
246     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
247     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
248     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
249     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
250     const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
251     const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
252     const uint32x4_t vmKLMN = vcltq_f32(vxKLMN, vmovq_n_f32(0.0f));
253 
254     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
255     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
256     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
257     vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
258     vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
259     vfKLMN = vbslq_f32(vmKLMN, vfKLMN, vsubq_f32(vone, vfKLMN));
260 
261     vst1q_f32(y, vf0123); y += 4;
262     vst1q_f32(y, vf4567); y += 4;
263     vst1q_f32(y, vf89AB); y += 4;
264     vst1q_f32(y, vfCDEF); y += 4;
265     vst1q_f32(y, vfGHIJ); y += 4;
266     vst1q_f32(y, vfKLMN); y += 4;
267   }
268   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
269     const float32x4_t vx = vld1q_f32(x); x += 4;
270 
271     // General structure of the algorithm:
272     //           / exp(x) / (1 + exp(x)) if x <= 0
273     //   f[x] :=
274     //           \ 1 - f[-x] if x >= 0
275     //
276     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
277     // then replace result with 1 - f[-z] if x >= 0.
278     const float32x4_t vz = vabsq_f32(vx);
279 
280     // Compute reduced argument n := round(-z * 64 / log(2)).
281     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
282     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
283     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
284     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
285     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
286     // very end of the algorithm.
287     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
288 
289     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
290     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
291     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
292     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
293     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
294     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
295     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
296     //    and thus the adjusted exponent is not lower than -126.
297     //
298     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
299     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
300 
301     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
302     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
303     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
304     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
305     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
306     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
307     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
308     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
309     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
310     // Adjust exponent of the value l fetched from the table to get the final s value.
311     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
312 
313     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
314     vn = vsubq_f32(vn, vmagic_bias);
315 
316     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
317     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
318 
319     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
320     //   P1(t) = 1 + t * (-1 + t * c2)
321     float32x4_t vp = vmulq_f32(vt, vc2);
322     vp = vfmsq_f32(vt, vp, vt);
323 
324     // Reconstruct the exp(-z) value:
325     //   f = s * (1 + t * (-1 + t * c2))
326     //     = s * (1 - t + t * (t * c2))
327     //     = s - s * (t - t * (t * c2))
328     //     = s - s * p
329     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
330 
331     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
332     const float32x4_t vd = vaddq_f32(vy, vone);
333 
334     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
335     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
336     // Thus the reciprocal of the denominator never overflows.
337     float32x4_t vr = vrecpeq_f32(vd);
338 
339     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
340 
341     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
342 
343     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
344     float32x4_t vf = vmulq_f32(vy, vr);
345 
346     // For inputs below denormal cutoff, replace output with +0.0f.
347     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
348     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
349 
350     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
351     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
352     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
353 
354     vst1q_f32(y, vf); y += 4;
355   }
356   if XNN_UNLIKELY(n != 0) {
357     const float32x4_t vx = vld1q_f32(x);
358 
359     // General structure of the algorithm:
360     //           / exp(x) / (1 + exp(x)) if x <= 0
361     //   f[x] :=
362     //           \ 1 - f[-x] if x >= 0
363     //
364     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
365     // then replace result with 1 - f[-z] if x >= 0.
366     const float32x4_t vz = vabsq_f32(vx);
367 
368     // Compute reduced argument n := round(-z * 64 / log(2)).
369     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
370     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
371     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
372     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
373     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
374     // very end of the algorithm.
375     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
376 
377     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
378     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
379     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
380     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
381     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
382     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
383     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
384     //    and thus the adjusted exponent is not lower than -126.
385     //
386     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
387     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
388 
389     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
390     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
391     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
392     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
393     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
394     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
395     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
396     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
397     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
398     // Adjust exponent of the value l fetched from the table to get the final s value.
399     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
400 
401     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
402     vn = vsubq_f32(vn, vmagic_bias);
403 
404     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
405     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
406 
407     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
408     //   P1(t) = 1 + t * (-1 + t * c2)
409     float32x4_t vp = vmulq_f32(vt, vc2);
410     vp = vfmsq_f32(vt, vp, vt);
411 
412     // Reconstruct the exp(-z) value:
413     //   f = s * (1 + t * (-1 + t * c2))
414     //     = s * (1 - t + t * (t * c2))
415     //     = s - s * (t - t * (t * c2))
416     //     = s - s * p
417     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
418 
419     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
420     const float32x4_t vd = vaddq_f32(vy, vone);
421 
422     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
423     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
424     // Thus the reciprocal of the denominator never overflows.
425     float32x4_t vr = vrecpeq_f32(vd);
426 
427     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
428 
429     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
430 
431     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
432     float32x4_t vf = vmulq_f32(vy, vr);
433 
434     // For inputs below denormal cutoff, replace output with +0.0f.
435     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
436     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
437 
438     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
439     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
440     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
441 
442     float32x2_t vf_lo = vget_low_f32(vf);
443     if (n & (2 * sizeof(float))) {
444       vst1_f32(y, vf_lo); y += 2;
445       vf_lo = vget_high_f32(vf);
446     }
447     if (n & (1 * sizeof(float))) {
448       vst1_lane_f32(y, vf_lo, 0);
449     }
450   }
451 }
452