1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2recps_x24(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2recps_x24(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33 const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
34 const float32x4_t vone = vmovq_n_f32(1.0f);
35
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37
38 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39
40 for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
41 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44 const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45 const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
46 const float32x4_t vxKLMN = vld1q_f32(x); x += 4;
47
48 // General structure of the algorithm:
49 // / exp(x) / (1 + exp(x)) if x <= 0
50 // f[x] :=
51 // \ 1 - f[-x] if x >= 0
52 //
53 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
54 // then replace result with 1 - f[-z] if x >= 0.
55 const float32x4_t vz0123 = vabsq_f32(vx0123);
56 const float32x4_t vz4567 = vabsq_f32(vx4567);
57 const float32x4_t vz89AB = vabsq_f32(vx89AB);
58 const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
59 const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
60 const float32x4_t vzKLMN = vabsq_f32(vxKLMN);
61
62 // Compute reduced argument n := round(-z * 64 / log(2)).
63 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
64 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
65 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
66 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
67 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
68 // very end of the algorithm.
69 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
70 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
71 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
72 float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x64);
73 float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e_x64);
74 float32x4_t vnKLMN = vfmaq_f32(vmagic_bias, vzKLMN, vminus_log2e_x64);
75
76 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
77 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
78 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
79 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
80 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
81 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
82 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
83 // and thus the adjusted exponent is not lower than -126.
84 //
85 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
86 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
87 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
88 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
89 const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
90 const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17);
91 const int32x4_t veKLMN = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnKLMN), vmovq_n_s32(INT32_C(0x3F))), 17);
92
93 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
94 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
95 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
96 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
97 const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
98 const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
99 const uint64x2_t vidxKLMN = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnKLMN), vindex_mask));
100
101 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
102 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
103 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
104 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
105 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
106 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
107 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
108 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
109 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
110 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
111 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
112 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
113 const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
114 const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
115 float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
116 float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
117 const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
118 const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
119 float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]);
120 float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]);
121 const uint64_t vidxKL = vgetq_lane_u64(vidxKLMN, 0);
122 const uint64_t vidxMN = vgetq_lane_u64(vidxKLMN, 1);
123 float32x2_t vlKL = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxKL]);
124 float32x2_t vlMN = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxMN]);
125
126 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
127 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
128 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
129 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
130 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
131 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
132 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
133 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
134 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
135 vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
136 vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
137 const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
138 vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1);
139 vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
140 const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
141 vlKL = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxKL >> 32)], vlKL, 1);
142 vlMN = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxMN >> 32)], vlMN, 1);
143 const float32x4_t vlKLMN = vcombine_f32(vlKL, vlMN);
144
145 // Adjust exponent of the value l fetched from the table to get the final s value.
146 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
147 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
148 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
149 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
150 const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
151 const float32x4_t vsKLMN = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlKLMN), veKLMN));
152
153 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
154 vn0123 = vsubq_f32(vn0123, vmagic_bias);
155 vn4567 = vsubq_f32(vn4567, vmagic_bias);
156 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
157 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
158 vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
159 vnKLMN = vsubq_f32(vnKLMN, vmagic_bias);
160
161 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
162 float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o64);
163 float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o64);
164 float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o64);
165 float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2_o64);
166 float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2_o64);
167 float32x4_t vtKLMN = vfmaq_f32(vzKLMN, vnKLMN, vln2_o64);
168
169 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
170 // P1(t) = 1 + t * (-1 + t * c2)
171 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
172 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
173 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
174 float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
175 float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2);
176 float32x4_t vpKLMN = vmulq_f32(vtKLMN, vc2);
177
178 vp0123 = vfmsq_f32(vt0123, vp0123, vt0123);
179 vp4567 = vfmsq_f32(vt4567, vp4567, vt4567);
180 vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB);
181 vpCDEF = vfmsq_f32(vtCDEF, vpCDEF, vtCDEF);
182 vpGHIJ = vfmsq_f32(vtGHIJ, vpGHIJ, vtGHIJ);
183 vpKLMN = vfmsq_f32(vtKLMN, vpKLMN, vtKLMN);
184
185 // Reconstruct the exp(-z) value:
186 // f = s * (1 + t * (-1 + t * c2))
187 // = s * (1 - t + t * (t * c2))
188 // = s - s * (t - t * (t * c2))
189 // = s - s * p
190 const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123);
191 const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567);
192 const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB);
193 const float32x4_t vyCDEF = vfmsq_f32(vsCDEF, vsCDEF, vpCDEF);
194 const float32x4_t vyGHIJ = vfmsq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
195 const float32x4_t vyKLMN = vfmsq_f32(vsKLMN, vsKLMN, vpKLMN);
196
197 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
198 const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
199 const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
200 const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
201 const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
202 const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone);
203 const float32x4_t vdKLMN = vaddq_f32(vyKLMN, vone);
204
205 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
206 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
207 // Thus the reciprocal of the denominator never overflows.
208 float32x4_t vr0123 = vrecpeq_f32(vd0123);
209 float32x4_t vr4567 = vrecpeq_f32(vd4567);
210 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
211 float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
212 float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ);
213 float32x4_t vrKLMN = vrecpeq_f32(vdKLMN);
214
215 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
216 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
217 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
218 vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
219 vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
220 vrKLMN = vmulq_f32(vrKLMN, vrecpsq_f32(vrKLMN, vdKLMN));
221
222 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
223 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
224 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
225 vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
226 vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
227 vrKLMN = vmulq_f32(vrKLMN, vrecpsq_f32(vrKLMN, vdKLMN));
228
229 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
230 float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
231 float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
232 float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
233 float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
234 float32x4_t vfGHIJ = vmulq_f32(vyGHIJ, vrGHIJ);
235 float32x4_t vfKLMN = vmulq_f32(vyKLMN, vrKLMN);
236
237 // For inputs below denormal cutoff, replace output with +0.0f.
238 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
239 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
240 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
241 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
242 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
243 vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
244 vfKLMN = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfKLMN), vcagtq_f32(vxKLMN, vdenorm_cutoff)));
245
246 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
247 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
248 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
249 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
250 const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
251 const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
252 const uint32x4_t vmKLMN = vcltq_f32(vxKLMN, vmovq_n_f32(0.0f));
253
254 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
255 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
256 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
257 vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
258 vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
259 vfKLMN = vbslq_f32(vmKLMN, vfKLMN, vsubq_f32(vone, vfKLMN));
260
261 vst1q_f32(y, vf0123); y += 4;
262 vst1q_f32(y, vf4567); y += 4;
263 vst1q_f32(y, vf89AB); y += 4;
264 vst1q_f32(y, vfCDEF); y += 4;
265 vst1q_f32(y, vfGHIJ); y += 4;
266 vst1q_f32(y, vfKLMN); y += 4;
267 }
268 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
269 const float32x4_t vx = vld1q_f32(x); x += 4;
270
271 // General structure of the algorithm:
272 // / exp(x) / (1 + exp(x)) if x <= 0
273 // f[x] :=
274 // \ 1 - f[-x] if x >= 0
275 //
276 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
277 // then replace result with 1 - f[-z] if x >= 0.
278 const float32x4_t vz = vabsq_f32(vx);
279
280 // Compute reduced argument n := round(-z * 64 / log(2)).
281 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
282 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
283 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
284 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
285 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
286 // very end of the algorithm.
287 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
288
289 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
290 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
291 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
292 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
293 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
294 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
295 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
296 // and thus the adjusted exponent is not lower than -126.
297 //
298 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
299 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
300
301 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
302 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
303 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
304 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
305 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
306 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
307 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
308 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
309 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
310 // Adjust exponent of the value l fetched from the table to get the final s value.
311 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
312
313 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
314 vn = vsubq_f32(vn, vmagic_bias);
315
316 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
317 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
318
319 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
320 // P1(t) = 1 + t * (-1 + t * c2)
321 float32x4_t vp = vmulq_f32(vt, vc2);
322 vp = vfmsq_f32(vt, vp, vt);
323
324 // Reconstruct the exp(-z) value:
325 // f = s * (1 + t * (-1 + t * c2))
326 // = s * (1 - t + t * (t * c2))
327 // = s - s * (t - t * (t * c2))
328 // = s - s * p
329 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
330
331 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
332 const float32x4_t vd = vaddq_f32(vy, vone);
333
334 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
335 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
336 // Thus the reciprocal of the denominator never overflows.
337 float32x4_t vr = vrecpeq_f32(vd);
338
339 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
340
341 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
342
343 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
344 float32x4_t vf = vmulq_f32(vy, vr);
345
346 // For inputs below denormal cutoff, replace output with +0.0f.
347 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
348 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
349
350 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
351 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
352 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
353
354 vst1q_f32(y, vf); y += 4;
355 }
356 if XNN_UNLIKELY(n != 0) {
357 const float32x4_t vx = vld1q_f32(x);
358
359 // General structure of the algorithm:
360 // / exp(x) / (1 + exp(x)) if x <= 0
361 // f[x] :=
362 // \ 1 - f[-x] if x >= 0
363 //
364 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
365 // then replace result with 1 - f[-z] if x >= 0.
366 const float32x4_t vz = vabsq_f32(vx);
367
368 // Compute reduced argument n := round(-z * 64 / log(2)).
369 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
370 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
371 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
372 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
373 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
374 // very end of the algorithm.
375 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
376
377 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
378 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
379 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
380 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
381 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
382 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
383 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
384 // and thus the adjusted exponent is not lower than -126.
385 //
386 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
387 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
388
389 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
390 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
391 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
392 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
393 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
394 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
395 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
396 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
397 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
398 // Adjust exponent of the value l fetched from the table to get the final s value.
399 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
400
401 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
402 vn = vsubq_f32(vn, vmagic_bias);
403
404 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
405 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
406
407 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
408 // P1(t) = 1 + t * (-1 + t * c2)
409 float32x4_t vp = vmulq_f32(vt, vc2);
410 vp = vfmsq_f32(vt, vp, vt);
411
412 // Reconstruct the exp(-z) value:
413 // f = s * (1 + t * (-1 + t * c2))
414 // = s * (1 - t + t * (t * c2))
415 // = s - s * (t - t * (t * c2))
416 // = s - s * p
417 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
418
419 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
420 const float32x4_t vd = vaddq_f32(vy, vone);
421
422 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
423 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
424 // Thus the reciprocal of the denominator never overflows.
425 float32x4_t vr = vrecpeq_f32(vd);
426
427 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
428
429 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
430
431 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
432 float32x4_t vf = vmulq_f32(vy, vr);
433
434 // For inputs below denormal cutoff, replace output with +0.0f.
435 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
436 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
437
438 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
439 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
440 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
441
442 float32x2_t vf_lo = vget_low_f32(vf);
443 if (n & (2 * sizeof(float))) {
444 vst1_f32(y, vf_lo); y += 2;
445 vf_lo = vget_high_f32(vf);
446 }
447 if (n & (1 * sizeof(float))) {
448 vst1_lane_f32(y, vf_lo, 0);
449 }
450 }
451 }
452