• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2recps_x4(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2recps_x4(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33   const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
34   const float32x4_t vone = vmovq_n_f32(1.0f);
35 
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37 
38   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39 
40   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
41     const float32x4_t vx = vld1q_f32(x); x += 4;
42 
43     // General structure of the algorithm:
44     //           / exp(x) / (1 + exp(x)) if x <= 0
45     //   f[x] :=
46     //           \ 1 - f[-x] if x >= 0
47     //
48     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
49     // then replace result with 1 - f[-z] if x >= 0.
50     const float32x4_t vz = vabsq_f32(vx);
51 
52     // Compute reduced argument n := round(-z * 64 / log(2)).
53     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
54     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
55     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
56     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
57     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
58     // very end of the algorithm.
59     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
60 
61     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
62     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
63     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
64     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
65     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
66     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
67     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
68     //    and thus the adjusted exponent is not lower than -126.
69     //
70     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
71     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
72 
73     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
74     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
75     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
76     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
77     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
78     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
79     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
80     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
81     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
82     // Adjust exponent of the value l fetched from the table to get the final s value.
83     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
84 
85     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
86     vn = vsubq_f32(vn, vmagic_bias);
87 
88     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
89     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
90 
91     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
92     //   P1(t) = 1 + t * (-1 + t * c2)
93     float32x4_t vp = vmulq_f32(vt, vc2);
94     vp = vfmsq_f32(vt, vp, vt);
95 
96     // Reconstruct the exp(-z) value:
97     //   f = s * (1 + t * (-1 + t * c2))
98     //     = s * (1 - t + t * (t * c2))
99     //     = s - s * (t - t * (t * c2))
100     //     = s - s * p
101     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
102 
103     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
104     const float32x4_t vd = vaddq_f32(vy, vone);
105 
106     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
107     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
108     // Thus the reciprocal of the denominator never overflows.
109     float32x4_t vr = vrecpeq_f32(vd);
110 
111     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
112 
113     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
114 
115     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
116     float32x4_t vf = vmulq_f32(vy, vr);
117 
118     // For inputs below denormal cutoff, replace output with +0.0f.
119     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
120     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
121 
122     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
123     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
124     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
125 
126     vst1q_f32(y, vf); y += 4;
127   }
128   if XNN_UNLIKELY(n != 0) {
129     const float32x4_t vx = vld1q_f32(x);
130 
131     // General structure of the algorithm:
132     //           / exp(x) / (1 + exp(x)) if x <= 0
133     //   f[x] :=
134     //           \ 1 - f[-x] if x >= 0
135     //
136     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
137     // then replace result with 1 - f[-z] if x >= 0.
138     const float32x4_t vz = vabsq_f32(vx);
139 
140     // Compute reduced argument n := round(-z * 64 / log(2)).
141     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
142     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
143     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
144     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
145     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
146     // very end of the algorithm.
147     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
148 
149     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
150     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
151     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
152     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
153     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
154     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
155     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
156     //    and thus the adjusted exponent is not lower than -126.
157     //
158     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
159     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
160 
161     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
162     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
163     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
164     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
165     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
166     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
167     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
168     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
169     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
170     // Adjust exponent of the value l fetched from the table to get the final s value.
171     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
172 
173     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
174     vn = vsubq_f32(vn, vmagic_bias);
175 
176     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
177     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
178 
179     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
180     //   P1(t) = 1 + t * (-1 + t * c2)
181     float32x4_t vp = vmulq_f32(vt, vc2);
182     vp = vfmsq_f32(vt, vp, vt);
183 
184     // Reconstruct the exp(-z) value:
185     //   f = s * (1 + t * (-1 + t * c2))
186     //     = s * (1 - t + t * (t * c2))
187     //     = s - s * (t - t * (t * c2))
188     //     = s - s * p
189     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
190 
191     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
192     const float32x4_t vd = vaddq_f32(vy, vone);
193 
194     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
195     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
196     // Thus the reciprocal of the denominator never overflows.
197     float32x4_t vr = vrecpeq_f32(vd);
198 
199     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
200 
201     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
202 
203     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
204     float32x4_t vf = vmulq_f32(vy, vr);
205 
206     // For inputs below denormal cutoff, replace output with +0.0f.
207     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
208     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
209 
210     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
211     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
212     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
213 
214     float32x2_t vf_lo = vget_low_f32(vf);
215     if (n & (2 * sizeof(float))) {
216       vst1_f32(y, vf_lo); y += 2;
217       vf_lo = vget_high_f32(vf);
218     }
219     if (n & (1 * sizeof(float))) {
220       vst1_lane_f32(y, vf_lo, 0);
221     }
222   }
223 }
224