• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_div_x24(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_div_x24(
19     size_t n,
20     const float* x,
21     float* y,
22     const void* params)
23 {
24   assert(n % sizeof(float) == 0);
25 
26   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
27   // The largest z for which sigmoidf(-z) is normalized.
28   // This number is also the largest z for which expf(-z) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
30   const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
31   const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f);
32   const float32x4_t vone = vmovq_n_f32(1.0f);
33 
34   const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
35   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36   const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
37   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38   const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
39 
40   for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
41     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44     const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45     const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
46     const float32x4_t vxKLMN = vld1q_f32(x); x += 4;
47 
48     // General structure of the algorithm:
49     //           / exp(x) / (1 + exp(x)) if x <= 0
50     //   f[x] :=
51     //           \ 1 - f[-x] if x >= 0
52     //
53     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
54     // then replace result with 1 - f[z] if x >= 0.
55     const float32x4_t vz0123 = vabsq_f32(vx0123);
56     const float32x4_t vz4567 = vabsq_f32(vx4567);
57     const float32x4_t vz89AB = vabsq_f32(vx89AB);
58     const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
59     const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
60     const float32x4_t vzKLMN = vabsq_f32(vxKLMN);
61 
62     // Compute reduced argument n := round(-z / log(2)).
63     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
64     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
65     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
66     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
67     // anyway. We fixup the result for such inputs at the very end of the algorithm.
68     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e);
69     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e);
70     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e);
71     float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e);
72     float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e);
73     float32x4_t vnKLMN = vfmaq_f32(vmagic_bias, vzKLMN, vminus_log2e);
74 
75     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
76     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
77     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
78     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
79     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
80     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
81     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23));
82     const float32x4_t vsKLMN = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnKLMN), 23));
83 
84     // Subtract the large number back to get final n := round(-z / log(2)).
85     vn0123 = vsubq_f32(vn0123, vmagic_bias);
86     vn4567 = vsubq_f32(vn4567, vmagic_bias);
87     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
88     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
89     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
90     vnKLMN = vsubq_f32(vnKLMN, vmagic_bias);
91 
92     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
93     float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2);
94     float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2);
95     float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2);
96     float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2);
97     float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2);
98     float32x4_t vtKLMN = vfmaq_f32(vzKLMN, vnKLMN, vln2);
99 
100     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
101     float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
102     float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
103     float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
104     float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF);
105     float32x4_t vpGHIJ = vfmaq_f32(vc4, vc5, vtGHIJ);
106     float32x4_t vpKLMN = vfmaq_f32(vc4, vc5, vtKLMN);
107 
108     vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
109     vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
110     vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
111     vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF);
112     vpGHIJ = vfmaq_f32(vc3, vpGHIJ, vtGHIJ);
113     vpKLMN = vfmaq_f32(vc3, vpKLMN, vtKLMN);
114 
115     vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
116     vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
117     vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
118     vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF);
119     vpGHIJ = vfmaq_f32(vc2, vpGHIJ, vtGHIJ);
120     vpKLMN = vfmaq_f32(vc2, vpKLMN, vtKLMN);
121 
122     vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
123     vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
124     vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
125     vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF);
126     vpGHIJ = vfmaq_f32(vc1, vpGHIJ, vtGHIJ);
127     vpKLMN = vfmaq_f32(vc1, vpKLMN, vtKLMN);
128 
129     // Reconstruct the exp(-z) value:
130     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
131     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
132     //     = s + (t * s) * p
133     vt0123 = vmulq_f32(vt0123, vs0123);
134     vt4567 = vmulq_f32(vt4567, vs4567);
135     vt89AB = vmulq_f32(vt89AB, vs89AB);
136     vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
137     vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ);
138     vtKLMN = vmulq_f32(vtKLMN, vsKLMN);
139 
140     float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123);
141     float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567);
142     float32x4_t ve89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
143     float32x4_t veCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF);
144     float32x4_t veGHIJ = vfmaq_f32(vsGHIJ, vpGHIJ, vtGHIJ);
145     float32x4_t veKLMN = vfmaq_f32(vsKLMN, vpKLMN, vtKLMN);
146 
147     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
148     float32x4_t vd0123 = vaddq_f32(ve0123, vone);
149     float32x4_t vd4567 = vaddq_f32(ve4567, vone);
150     float32x4_t vd89AB = vaddq_f32(ve89AB, vone);
151     float32x4_t vdCDEF = vaddq_f32(veCDEF, vone);
152     float32x4_t vdGHIJ = vaddq_f32(veGHIJ, vone);
153     float32x4_t vdKLMN = vaddq_f32(veKLMN, vone);
154 
155     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
156     float32x4_t vf0123 = vdivq_f32(ve0123, vd0123);
157     float32x4_t vf4567 = vdivq_f32(ve4567, vd4567);
158     float32x4_t vf89AB = vdivq_f32(ve89AB, vd89AB);
159     float32x4_t vfCDEF = vdivq_f32(veCDEF, vdCDEF);
160     float32x4_t vfGHIJ = vdivq_f32(veGHIJ, vdGHIJ);
161     float32x4_t vfKLMN = vdivq_f32(veKLMN, vdKLMN);
162 
163     // For inputs below denormal cutoff, replace output with +0.0f.
164     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
165     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
166     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
167     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
168     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
169     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
170     vfKLMN = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfKLMN), vcagtq_f32(vxKLMN, vdenorm_cutoff)));
171 
172     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
173     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
174     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
175     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
176     const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
177     const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
178     const uint32x4_t vmKLMN = vcltq_f32(vxKLMN, vmovq_n_f32(0.0f));
179 
180     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
181     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
182     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
183     vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
184     vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
185     vfKLMN = vbslq_f32(vmKLMN, vfKLMN, vsubq_f32(vone, vfKLMN));
186 
187     vst1q_f32(y, vf0123); y += 4;
188     vst1q_f32(y, vf4567); y += 4;
189     vst1q_f32(y, vf89AB); y += 4;
190     vst1q_f32(y, vfCDEF); y += 4;
191     vst1q_f32(y, vfGHIJ); y += 4;
192     vst1q_f32(y, vfKLMN); y += 4;
193   }
194   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
195     const float32x4_t vx = vld1q_f32(x); x += 4;
196 
197     // General structure of the algorithm:
198     //           / exp(x) / (1 + exp(x)) if x <= 0
199     //   f[x] :=
200     //           \ 1 - f[-x] if x >= 0
201     //
202     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
203     // then replace result with 1 - f[z] if x <= 0.
204     const float32x4_t vz = vabsq_f32(vx);
205 
206     // Compute reduced argument n := round(-z / log(2)).
207     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
208     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
209     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
210     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
211     // anyway. We fixup the result for such inputs at the very end of the algorithm.
212     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
213 
214     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
215     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
216     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
217 
218     // Subtract the large number back to get final n := round(-z / log(2)).
219     vn = vsubq_f32(vn, vmagic_bias);
220 
221     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
222     float32x4_t vt = vfmaq_f32(vz, vn, vln2);
223 
224     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
225     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
226     vp = vfmaq_f32(vc3, vp, vt);
227     vp = vfmaq_f32(vc2, vp, vt);
228     vp = vfmaq_f32(vc1, vp, vt);
229 
230     // Reconstruct the exp(-z) value:
231     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
232     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
233     //     = s + (t * s) * p
234     vt = vmulq_f32(vt, vs);
235     float32x4_t ve = vfmaq_f32(vs, vp, vt);
236 
237     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
238     float32x4_t vd = vaddq_f32(ve, vone);
239 
240     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
241     float32x4_t vf = vdivq_f32(ve, vd);
242 
243     // For inputs below denormal cutoff, replace output with +0.0f.
244     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
245     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
246 
247     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
248     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
249     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
250 
251     vst1q_f32(y, vf); y += 4;
252   }
253   if XNN_UNLIKELY(n != 0) {
254     const float32x4_t vx = vld1q_f32(x);
255 
256     // General structure of the algorithm:
257     //           / exp(x) / (1 + exp(x)) if x <= 0
258     //   f[x] :=
259     //           \ 1 - f[-x] if x >= 0
260     //
261     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
262     // then replace result with 1 - f[z] if x <= 0.
263     const float32x4_t vz = vabsq_f32(vx);
264 
265     // Compute reduced argument n := round(-z / log(2)).
266     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
267     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
268     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
269     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
270     // anyway. We fixup the result for such inputs at the very end of the algorithm.
271     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
272 
273     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
274     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
275     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
276 
277     // Subtract the large number back to get final n := round(-z / log(2)).
278     vn = vsubq_f32(vn, vmagic_bias);
279 
280     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
281     float32x4_t vt = vfmaq_f32(vz, vn, vln2);
282 
283     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
284     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
285     vp = vfmaq_f32(vc3, vp, vt);
286     vp = vfmaq_f32(vc2, vp, vt);
287     vp = vfmaq_f32(vc1, vp, vt);
288 
289     // Reconstruct the exp(-z) value:
290     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
291     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
292     //     = s + (t * s) * p
293     vt = vmulq_f32(vt, vs);
294     float32x4_t ve = vfmaq_f32(vs, vp, vt);
295 
296     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
297     float32x4_t vd = vaddq_f32(ve, vone);
298 
299     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
300     float32x4_t vf = vdivq_f32(ve, vd);
301 
302     // For inputs below denormal cutoff, replace output with +0.0f.
303     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
304     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
305 
306     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
307     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
308     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
309 
310     float32x2_t vf_lo = vget_low_f32(vf);
311     if (n & (2 * sizeof(float))) {
312       vst1_f32(y, vf_lo); y += 2;
313       vf_lo = vget_high_f32(vf);
314     }
315     if (n & (1 * sizeof(float))) {
316       vst1_lane_f32(y, vf_lo, 0);
317     }
318   }
319 }
320