1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_nr2fma_x12(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_nr2fma_x12(
19 size_t n,
20 const float* x,
21 float* y,
22 const void* params)
23 {
24 assert(n % sizeof(float) == 0);
25
26 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
27 // The largest z for which sigmoidf(-z) is normalized.
28 // This number is also the largest z for which expf(-z) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
30 const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
31 const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f);
32 const float32x4_t vone = vmovq_n_f32(1.0f);
33
34 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
35 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36 const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
37 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38 const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
39
40 for (; n >= 12 * sizeof(float); n -= 12 * sizeof(float)) {
41 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44
45 // General structure of the algorithm:
46 // / exp(x) / (1 + exp(x)) if x <= 0
47 // f[x] :=
48 // \ 1 - f[-x] if x >= 0
49 //
50 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
51 // then replace result with 1 - f[z] if x >= 0.
52 const float32x4_t vz0123 = vabsq_f32(vx0123);
53 const float32x4_t vz4567 = vabsq_f32(vx4567);
54 const float32x4_t vz89AB = vabsq_f32(vx89AB);
55
56 // Compute reduced argument n := round(-z / log(2)).
57 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
58 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
59 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
60 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
61 // anyway. We fixup the result for such inputs at the very end of the algorithm.
62 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e);
63 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e);
64 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e);
65
66 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
67 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
68 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
69 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
70 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
71
72 // Subtract the large number back to get final n := round(-z / log(2)).
73 vn0123 = vsubq_f32(vn0123, vmagic_bias);
74 vn4567 = vsubq_f32(vn4567, vmagic_bias);
75 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
76
77 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
78 float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2);
79 float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2);
80 float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2);
81
82 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
83 float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
84 float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
85 float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
86
87 vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
88 vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
89 vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
90
91 vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
92 vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
93 vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
94
95 vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
96 vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
97 vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
98
99 // Reconstruct the exp(-z) value:
100 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
101 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
102 // = s + (t * s) * p
103 vt0123 = vmulq_f32(vt0123, vs0123);
104 vt4567 = vmulq_f32(vt4567, vs4567);
105 vt89AB = vmulq_f32(vt89AB, vs89AB);
106
107 float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123);
108 float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567);
109 float32x4_t ve89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
110
111 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
112 float32x4_t vd0123 = vaddq_f32(ve0123, vone);
113 float32x4_t vd4567 = vaddq_f32(ve4567, vone);
114 float32x4_t vd89AB = vaddq_f32(ve89AB, vone);
115
116 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
117 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
118 // Thus the reciprocal of the denominator never overflows.
119 float32x4_t vr0123 = vrecpeq_f32(vd0123);
120 float32x4_t vr4567 = vrecpeq_f32(vd4567);
121 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
122
123 vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
124 vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
125 vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
126
127 vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
128 vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
129 vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
130
131 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
132 float32x4_t vf0123 = vmulq_f32(ve0123, vr0123);
133 float32x4_t vf4567 = vmulq_f32(ve4567, vr4567);
134 float32x4_t vf89AB = vmulq_f32(ve89AB, vr89AB);
135
136 // For inputs below denormal cutoff, replace output with +0.0f.
137 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
138 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
139 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
140 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
141
142 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
143 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
144 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
145 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
146
147 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
148 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
149 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
150
151 vst1q_f32(y, vf0123); y += 4;
152 vst1q_f32(y, vf4567); y += 4;
153 vst1q_f32(y, vf89AB); y += 4;
154 }
155 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
156 const float32x4_t vx = vld1q_f32(x); x += 4;
157
158 // General structure of the algorithm:
159 // / exp(x) / (1 + exp(x)) if x <= 0
160 // f[x] :=
161 // \ 1 - f[-x] if x >= 0
162 //
163 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
164 // then replace result with 1 - f[z] if x <= 0.
165 const float32x4_t vz = vabsq_f32(vx);
166
167 // Compute reduced argument n := round(-z / log(2)).
168 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
169 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
170 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
171 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
172 // anyway. We fixup the result for such inputs at the very end of the algorithm.
173 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
174
175 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
176 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
177 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
178
179 // Subtract the large number back to get final n := round(-z / log(2)).
180 vn = vsubq_f32(vn, vmagic_bias);
181
182 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
183 float32x4_t vt = vfmaq_f32(vz, vn, vln2);
184
185 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
186 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
187 vp = vfmaq_f32(vc3, vp, vt);
188 vp = vfmaq_f32(vc2, vp, vt);
189 vp = vfmaq_f32(vc1, vp, vt);
190
191 // Reconstruct the exp(-z) value:
192 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
193 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
194 // = s + (t * s) * p
195 vt = vmulq_f32(vt, vs);
196 float32x4_t ve = vfmaq_f32(vs, vp, vt);
197
198 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
199 float32x4_t vd = vaddq_f32(ve, vone);
200
201 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
202 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
203 // Thus the reciprocal of the denominator never overflows.
204 float32x4_t vr = vrecpeq_f32(vd);
205
206 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
207
208 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
209
210 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
211 float32x4_t vf = vmulq_f32(ve, vr);
212
213 // For inputs below denormal cutoff, replace output with +0.0f.
214 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
215 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
216
217 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
218 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
219 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
220
221 vst1q_f32(y, vf); y += 4;
222 }
223 if XNN_UNLIKELY(n != 0) {
224 const float32x4_t vx = vld1q_f32(x);
225
226 // General structure of the algorithm:
227 // / exp(x) / (1 + exp(x)) if x <= 0
228 // f[x] :=
229 // \ 1 - f[-x] if x >= 0
230 //
231 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
232 // then replace result with 1 - f[z] if x <= 0.
233 const float32x4_t vz = vabsq_f32(vx);
234
235 // Compute reduced argument n := round(-z / log(2)).
236 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
237 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
238 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
239 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
240 // anyway. We fixup the result for such inputs at the very end of the algorithm.
241 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
242
243 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
244 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
245 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
246
247 // Subtract the large number back to get final n := round(-z / log(2)).
248 vn = vsubq_f32(vn, vmagic_bias);
249
250 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
251 float32x4_t vt = vfmaq_f32(vz, vn, vln2);
252
253 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
254 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
255 vp = vfmaq_f32(vc3, vp, vt);
256 vp = vfmaq_f32(vc2, vp, vt);
257 vp = vfmaq_f32(vc1, vp, vt);
258
259 // Reconstruct the exp(-z) value:
260 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
261 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
262 // = s + (t * s) * p
263 vt = vmulq_f32(vt, vs);
264 float32x4_t ve = vfmaq_f32(vs, vp, vt);
265
266 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
267 float32x4_t vd = vaddq_f32(ve, vone);
268
269 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
270 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
271 // Thus the reciprocal of the denominator never overflows.
272 float32x4_t vr = vrecpeq_f32(vd);
273
274 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
275
276 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
277
278 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
279 float32x4_t vf = vmulq_f32(ve, vr);
280
281 // For inputs below denormal cutoff, replace output with +0.0f.
282 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
283 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
284
285 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
286 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
287 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
288
289 float32x2_t vf_lo = vget_low_f32(vf);
290 if (n & (2 * sizeof(float))) {
291 vst1_f32(y, vf_lo); y += 2;
292 vf_lo = vget_high_f32(vf);
293 }
294 if (n & (1 * sizeof(float))) {
295 vst1_lane_f32(y, vf_lo, 0);
296 }
297 }
298 }
299