• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_nr2fma_x24(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_nr2fma_x24(
19     size_t n,
20     const float* x,
21     float* y,
22     const void* params)
23 {
24   assert(n % sizeof(float) == 0);
25 
26   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
27   // The largest z for which sigmoidf(-z) is normalized.
28   // This number is also the largest z for which expf(-z) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
30   const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
31   const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f);
32   const float32x4_t vone = vmovq_n_f32(1.0f);
33 
34   const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
35   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36   const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
37   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38   const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
39 
40   for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
41     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44     const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45     const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
46     const float32x4_t vxKLMN = vld1q_f32(x); x += 4;
47 
48     // General structure of the algorithm:
49     //           / exp(x) / (1 + exp(x)) if x <= 0
50     //   f[x] :=
51     //           \ 1 - f[-x] if x >= 0
52     //
53     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
54     // then replace result with 1 - f[z] if x >= 0.
55     const float32x4_t vz0123 = vabsq_f32(vx0123);
56     const float32x4_t vz4567 = vabsq_f32(vx4567);
57     const float32x4_t vz89AB = vabsq_f32(vx89AB);
58     const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
59     const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
60     const float32x4_t vzKLMN = vabsq_f32(vxKLMN);
61 
62     // Compute reduced argument n := round(-z / log(2)).
63     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
64     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
65     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
66     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
67     // anyway. We fixup the result for such inputs at the very end of the algorithm.
68     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e);
69     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e);
70     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e);
71     float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e);
72     float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e);
73     float32x4_t vnKLMN = vfmaq_f32(vmagic_bias, vzKLMN, vminus_log2e);
74 
75     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
76     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
77     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
78     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
79     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
80     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
81     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23));
82     const float32x4_t vsKLMN = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnKLMN), 23));
83 
84     // Subtract the large number back to get final n := round(-z / log(2)).
85     vn0123 = vsubq_f32(vn0123, vmagic_bias);
86     vn4567 = vsubq_f32(vn4567, vmagic_bias);
87     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
88     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
89     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
90     vnKLMN = vsubq_f32(vnKLMN, vmagic_bias);
91 
92     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
93     float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2);
94     float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2);
95     float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2);
96     float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2);
97     float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2);
98     float32x4_t vtKLMN = vfmaq_f32(vzKLMN, vnKLMN, vln2);
99 
100     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
101     float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
102     float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
103     float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
104     float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF);
105     float32x4_t vpGHIJ = vfmaq_f32(vc4, vc5, vtGHIJ);
106     float32x4_t vpKLMN = vfmaq_f32(vc4, vc5, vtKLMN);
107 
108     vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
109     vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
110     vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
111     vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF);
112     vpGHIJ = vfmaq_f32(vc3, vpGHIJ, vtGHIJ);
113     vpKLMN = vfmaq_f32(vc3, vpKLMN, vtKLMN);
114 
115     vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
116     vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
117     vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
118     vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF);
119     vpGHIJ = vfmaq_f32(vc2, vpGHIJ, vtGHIJ);
120     vpKLMN = vfmaq_f32(vc2, vpKLMN, vtKLMN);
121 
122     vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
123     vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
124     vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
125     vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF);
126     vpGHIJ = vfmaq_f32(vc1, vpGHIJ, vtGHIJ);
127     vpKLMN = vfmaq_f32(vc1, vpKLMN, vtKLMN);
128 
129     // Reconstruct the exp(-z) value:
130     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
131     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
132     //     = s + (t * s) * p
133     vt0123 = vmulq_f32(vt0123, vs0123);
134     vt4567 = vmulq_f32(vt4567, vs4567);
135     vt89AB = vmulq_f32(vt89AB, vs89AB);
136     vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
137     vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ);
138     vtKLMN = vmulq_f32(vtKLMN, vsKLMN);
139 
140     float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123);
141     float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567);
142     float32x4_t ve89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
143     float32x4_t veCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF);
144     float32x4_t veGHIJ = vfmaq_f32(vsGHIJ, vpGHIJ, vtGHIJ);
145     float32x4_t veKLMN = vfmaq_f32(vsKLMN, vpKLMN, vtKLMN);
146 
147     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
148     float32x4_t vd0123 = vaddq_f32(ve0123, vone);
149     float32x4_t vd4567 = vaddq_f32(ve4567, vone);
150     float32x4_t vd89AB = vaddq_f32(ve89AB, vone);
151     float32x4_t vdCDEF = vaddq_f32(veCDEF, vone);
152     float32x4_t vdGHIJ = vaddq_f32(veGHIJ, vone);
153     float32x4_t vdKLMN = vaddq_f32(veKLMN, vone);
154 
155     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
156     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
157     // Thus the reciprocal of the denominator never overflows.
158     float32x4_t vr0123 = vrecpeq_f32(vd0123);
159     float32x4_t vr4567 = vrecpeq_f32(vd4567);
160     float32x4_t vr89AB = vrecpeq_f32(vd89AB);
161     float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
162     float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ);
163     float32x4_t vrKLMN = vrecpeq_f32(vdKLMN);
164 
165     vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
166     vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
167     vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
168     vrCDEF = vfmaq_f32(vrCDEF, vrCDEF, vfmsq_f32(vone, vrCDEF, vdCDEF));
169     vrGHIJ = vfmaq_f32(vrGHIJ, vrGHIJ, vfmsq_f32(vone, vrGHIJ, vdGHIJ));
170     vrKLMN = vfmaq_f32(vrKLMN, vrKLMN, vfmsq_f32(vone, vrKLMN, vdKLMN));
171 
172     vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
173     vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
174     vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
175     vrCDEF = vfmaq_f32(vrCDEF, vrCDEF, vfmsq_f32(vone, vrCDEF, vdCDEF));
176     vrGHIJ = vfmaq_f32(vrGHIJ, vrGHIJ, vfmsq_f32(vone, vrGHIJ, vdGHIJ));
177     vrKLMN = vfmaq_f32(vrKLMN, vrKLMN, vfmsq_f32(vone, vrKLMN, vdKLMN));
178 
179     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
180     float32x4_t vf0123 = vmulq_f32(ve0123, vr0123);
181     float32x4_t vf4567 = vmulq_f32(ve4567, vr4567);
182     float32x4_t vf89AB = vmulq_f32(ve89AB, vr89AB);
183     float32x4_t vfCDEF = vmulq_f32(veCDEF, vrCDEF);
184     float32x4_t vfGHIJ = vmulq_f32(veGHIJ, vrGHIJ);
185     float32x4_t vfKLMN = vmulq_f32(veKLMN, vrKLMN);
186 
187     // For inputs below denormal cutoff, replace output with +0.0f.
188     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
189     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
190     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
191     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
192     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
193     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
194     vfKLMN = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfKLMN), vcagtq_f32(vxKLMN, vdenorm_cutoff)));
195 
196     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
197     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
198     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
199     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
200     const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
201     const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
202     const uint32x4_t vmKLMN = vcltq_f32(vxKLMN, vmovq_n_f32(0.0f));
203 
204     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
205     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
206     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
207     vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
208     vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
209     vfKLMN = vbslq_f32(vmKLMN, vfKLMN, vsubq_f32(vone, vfKLMN));
210 
211     vst1q_f32(y, vf0123); y += 4;
212     vst1q_f32(y, vf4567); y += 4;
213     vst1q_f32(y, vf89AB); y += 4;
214     vst1q_f32(y, vfCDEF); y += 4;
215     vst1q_f32(y, vfGHIJ); y += 4;
216     vst1q_f32(y, vfKLMN); y += 4;
217   }
218   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
219     const float32x4_t vx = vld1q_f32(x); x += 4;
220 
221     // General structure of the algorithm:
222     //           / exp(x) / (1 + exp(x)) if x <= 0
223     //   f[x] :=
224     //           \ 1 - f[-x] if x >= 0
225     //
226     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
227     // then replace result with 1 - f[z] if x <= 0.
228     const float32x4_t vz = vabsq_f32(vx);
229 
230     // Compute reduced argument n := round(-z / log(2)).
231     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
232     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
233     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
234     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
235     // anyway. We fixup the result for such inputs at the very end of the algorithm.
236     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
237 
238     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
239     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
240     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
241 
242     // Subtract the large number back to get final n := round(-z / log(2)).
243     vn = vsubq_f32(vn, vmagic_bias);
244 
245     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
246     float32x4_t vt = vfmaq_f32(vz, vn, vln2);
247 
248     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
249     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
250     vp = vfmaq_f32(vc3, vp, vt);
251     vp = vfmaq_f32(vc2, vp, vt);
252     vp = vfmaq_f32(vc1, vp, vt);
253 
254     // Reconstruct the exp(-z) value:
255     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
256     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
257     //     = s + (t * s) * p
258     vt = vmulq_f32(vt, vs);
259     float32x4_t ve = vfmaq_f32(vs, vp, vt);
260 
261     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
262     float32x4_t vd = vaddq_f32(ve, vone);
263 
264     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
265     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
266     // Thus the reciprocal of the denominator never overflows.
267     float32x4_t vr = vrecpeq_f32(vd);
268 
269     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
270 
271     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
272 
273     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
274     float32x4_t vf = vmulq_f32(ve, vr);
275 
276     // For inputs below denormal cutoff, replace output with +0.0f.
277     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
278     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
279 
280     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
281     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
282     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
283 
284     vst1q_f32(y, vf); y += 4;
285   }
286   if XNN_UNLIKELY(n != 0) {
287     const float32x4_t vx = vld1q_f32(x);
288 
289     // General structure of the algorithm:
290     //           / exp(x) / (1 + exp(x)) if x <= 0
291     //   f[x] :=
292     //           \ 1 - f[-x] if x >= 0
293     //
294     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
295     // then replace result with 1 - f[z] if x <= 0.
296     const float32x4_t vz = vabsq_f32(vx);
297 
298     // Compute reduced argument n := round(-z / log(2)).
299     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
300     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
301     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
302     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
303     // anyway. We fixup the result for such inputs at the very end of the algorithm.
304     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
305 
306     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
307     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
308     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
309 
310     // Subtract the large number back to get final n := round(-z / log(2)).
311     vn = vsubq_f32(vn, vmagic_bias);
312 
313     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
314     float32x4_t vt = vfmaq_f32(vz, vn, vln2);
315 
316     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
317     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
318     vp = vfmaq_f32(vc3, vp, vt);
319     vp = vfmaq_f32(vc2, vp, vt);
320     vp = vfmaq_f32(vc1, vp, vt);
321 
322     // Reconstruct the exp(-z) value:
323     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
324     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
325     //     = s + (t * s) * p
326     vt = vmulq_f32(vt, vs);
327     float32x4_t ve = vfmaq_f32(vs, vp, vt);
328 
329     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
330     float32x4_t vd = vaddq_f32(ve, vone);
331 
332     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
333     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
334     // Thus the reciprocal of the denominator never overflows.
335     float32x4_t vr = vrecpeq_f32(vd);
336 
337     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
338 
339     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
340 
341     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
342     float32x4_t vf = vmulq_f32(ve, vr);
343 
344     // For inputs below denormal cutoff, replace output with +0.0f.
345     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
346     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
347 
348     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
349     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
350     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
351 
352     float32x2_t vf_lo = vget_low_f32(vf);
353     if (n & (2 * sizeof(float))) {
354       vst1_f32(y, vf_lo); y += 2;
355       vf_lo = vget_high_f32(vf);
356     }
357     if (n & (1 * sizeof(float))) {
358       vst1_lane_f32(y, vf_lo, 0);
359     }
360   }
361 }
362