1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_nr2fma_x8(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_nr2fma_x8(
19 size_t n,
20 const float* x,
21 float* y,
22 const void* params)
23 {
24 assert(n % sizeof(float) == 0);
25
26 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
27 // The largest z for which sigmoidf(-z) is normalized.
28 // This number is also the largest z for which expf(-z) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
30 const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
31 const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f);
32 const float32x4_t vone = vmovq_n_f32(1.0f);
33
34 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
35 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36 const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
37 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38 const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
39
40 for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
41 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43
44 // General structure of the algorithm:
45 // / exp(x) / (1 + exp(x)) if x <= 0
46 // f[x] :=
47 // \ 1 - f[-x] if x >= 0
48 //
49 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
50 // then replace result with 1 - f[z] if x >= 0.
51 const float32x4_t vz0123 = vabsq_f32(vx0123);
52 const float32x4_t vz4567 = vabsq_f32(vx4567);
53
54 // Compute reduced argument n := round(-z / log(2)).
55 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
56 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
57 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
58 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
59 // anyway. We fixup the result for such inputs at the very end of the algorithm.
60 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e);
61 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e);
62
63 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
64 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
65 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
66 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
67
68 // Subtract the large number back to get final n := round(-z / log(2)).
69 vn0123 = vsubq_f32(vn0123, vmagic_bias);
70 vn4567 = vsubq_f32(vn4567, vmagic_bias);
71
72 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
73 float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2);
74 float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2);
75
76 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
77 float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
78 float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
79
80 vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
81 vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
82
83 vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
84 vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
85
86 vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
87 vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
88
89 // Reconstruct the exp(-z) value:
90 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
91 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
92 // = s + (t * s) * p
93 vt0123 = vmulq_f32(vt0123, vs0123);
94 vt4567 = vmulq_f32(vt4567, vs4567);
95
96 float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123);
97 float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567);
98
99 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
100 float32x4_t vd0123 = vaddq_f32(ve0123, vone);
101 float32x4_t vd4567 = vaddq_f32(ve4567, vone);
102
103 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
104 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
105 // Thus the reciprocal of the denominator never overflows.
106 float32x4_t vr0123 = vrecpeq_f32(vd0123);
107 float32x4_t vr4567 = vrecpeq_f32(vd4567);
108
109 vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
110 vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
111
112 vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
113 vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
114
115 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
116 float32x4_t vf0123 = vmulq_f32(ve0123, vr0123);
117 float32x4_t vf4567 = vmulq_f32(ve4567, vr4567);
118
119 // For inputs below denormal cutoff, replace output with +0.0f.
120 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
121 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
122 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
123
124 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
125 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
126 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
127
128 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
129 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
130
131 vst1q_f32(y, vf0123); y += 4;
132 vst1q_f32(y, vf4567); y += 4;
133 }
134 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
135 const float32x4_t vx = vld1q_f32(x); x += 4;
136
137 // General structure of the algorithm:
138 // / exp(x) / (1 + exp(x)) if x <= 0
139 // f[x] :=
140 // \ 1 - f[-x] if x >= 0
141 //
142 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
143 // then replace result with 1 - f[z] if x <= 0.
144 const float32x4_t vz = vabsq_f32(vx);
145
146 // Compute reduced argument n := round(-z / log(2)).
147 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
148 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
149 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
150 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
151 // anyway. We fixup the result for such inputs at the very end of the algorithm.
152 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
153
154 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
155 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
156 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
157
158 // Subtract the large number back to get final n := round(-z / log(2)).
159 vn = vsubq_f32(vn, vmagic_bias);
160
161 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
162 float32x4_t vt = vfmaq_f32(vz, vn, vln2);
163
164 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
165 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
166 vp = vfmaq_f32(vc3, vp, vt);
167 vp = vfmaq_f32(vc2, vp, vt);
168 vp = vfmaq_f32(vc1, vp, vt);
169
170 // Reconstruct the exp(-z) value:
171 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
172 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
173 // = s + (t * s) * p
174 vt = vmulq_f32(vt, vs);
175 float32x4_t ve = vfmaq_f32(vs, vp, vt);
176
177 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
178 float32x4_t vd = vaddq_f32(ve, vone);
179
180 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
181 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
182 // Thus the reciprocal of the denominator never overflows.
183 float32x4_t vr = vrecpeq_f32(vd);
184
185 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
186
187 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
188
189 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
190 float32x4_t vf = vmulq_f32(ve, vr);
191
192 // For inputs below denormal cutoff, replace output with +0.0f.
193 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
194 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
195
196 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
197 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
198 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
199
200 vst1q_f32(y, vf); y += 4;
201 }
202 if XNN_UNLIKELY(n != 0) {
203 const float32x4_t vx = vld1q_f32(x);
204
205 // General structure of the algorithm:
206 // / exp(x) / (1 + exp(x)) if x <= 0
207 // f[x] :=
208 // \ 1 - f[-x] if x >= 0
209 //
210 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
211 // then replace result with 1 - f[z] if x <= 0.
212 const float32x4_t vz = vabsq_f32(vx);
213
214 // Compute reduced argument n := round(-z / log(2)).
215 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
216 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
217 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
218 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
219 // anyway. We fixup the result for such inputs at the very end of the algorithm.
220 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
221
222 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
223 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
224 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
225
226 // Subtract the large number back to get final n := round(-z / log(2)).
227 vn = vsubq_f32(vn, vmagic_bias);
228
229 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
230 float32x4_t vt = vfmaq_f32(vz, vn, vln2);
231
232 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
233 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
234 vp = vfmaq_f32(vc3, vp, vt);
235 vp = vfmaq_f32(vc2, vp, vt);
236 vp = vfmaq_f32(vc1, vp, vt);
237
238 // Reconstruct the exp(-z) value:
239 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
240 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
241 // = s + (t * s) * p
242 vt = vmulq_f32(vt, vs);
243 float32x4_t ve = vfmaq_f32(vs, vp, vt);
244
245 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
246 float32x4_t vd = vaddq_f32(ve, vone);
247
248 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
249 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
250 // Thus the reciprocal of the denominator never overflows.
251 float32x4_t vr = vrecpeq_f32(vd);
252
253 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
254
255 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
256
257 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
258 float32x4_t vf = vmulq_f32(ve, vr);
259
260 // For inputs below denormal cutoff, replace output with +0.0f.
261 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
262 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
263
264 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
265 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
266 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
267
268 float32x2_t vf_lo = vget_low_f32(vf);
269 if (n & (2 * sizeof(float))) {
270 vst1_f32(y, vf_lo); y += 2;
271 vf_lo = vget_high_f32(vf);
272 }
273 if (n & (1 * sizeof(float))) {
274 vst1_lane_f32(y, vf_lo, 0);
275 }
276 }
277 }
278