• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_nr2recps_x16(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_nr2recps_x16(
19     size_t n,
20     const float* x,
21     float* y,
22     const void* params)
23 {
24   assert(n % sizeof(float) == 0);
25 
26   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
27   // The largest z for which sigmoidf(-z) is normalized.
28   // This number is also the largest z for which expf(-z) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
30   const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
31   const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f);
32   const float32x4_t vone = vmovq_n_f32(1.0f);
33 
34   const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
35   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36   const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
37   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38   const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
39 
40   for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
41     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44     const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45 
46     // General structure of the algorithm:
47     //           / exp(x) / (1 + exp(x)) if x <= 0
48     //   f[x] :=
49     //           \ 1 - f[-x] if x >= 0
50     //
51     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
52     // then replace result with 1 - f[z] if x >= 0.
53     const float32x4_t vz0123 = vabsq_f32(vx0123);
54     const float32x4_t vz4567 = vabsq_f32(vx4567);
55     const float32x4_t vz89AB = vabsq_f32(vx89AB);
56     const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
57 
58     // Compute reduced argument n := round(-z / log(2)).
59     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
60     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
62     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
63     // anyway. We fixup the result for such inputs at the very end of the algorithm.
64     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e);
65     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e);
66     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e);
67     float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e);
68 
69     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
70     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
71     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
72     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
73     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
74     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
75 
76     // Subtract the large number back to get final n := round(-z / log(2)).
77     vn0123 = vsubq_f32(vn0123, vmagic_bias);
78     vn4567 = vsubq_f32(vn4567, vmagic_bias);
79     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
80     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
81 
82     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
83     float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2);
84     float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2);
85     float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2);
86     float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2);
87 
88     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
89     float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
90     float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
91     float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
92     float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF);
93 
94     vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
95     vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
96     vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
97     vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF);
98 
99     vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
100     vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
101     vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
102     vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF);
103 
104     vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
105     vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
106     vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
107     vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF);
108 
109     // Reconstruct the exp(-z) value:
110     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
111     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
112     //     = s + (t * s) * p
113     vt0123 = vmulq_f32(vt0123, vs0123);
114     vt4567 = vmulq_f32(vt4567, vs4567);
115     vt89AB = vmulq_f32(vt89AB, vs89AB);
116     vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
117 
118     float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123);
119     float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567);
120     float32x4_t ve89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
121     float32x4_t veCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF);
122 
123     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
124     float32x4_t vd0123 = vaddq_f32(ve0123, vone);
125     float32x4_t vd4567 = vaddq_f32(ve4567, vone);
126     float32x4_t vd89AB = vaddq_f32(ve89AB, vone);
127     float32x4_t vdCDEF = vaddq_f32(veCDEF, vone);
128 
129     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
130     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
131     // Thus the reciprocal of the denominator never overflows.
132     float32x4_t vr0123 = vrecpeq_f32(vd0123);
133     float32x4_t vr4567 = vrecpeq_f32(vd4567);
134     float32x4_t vr89AB = vrecpeq_f32(vd89AB);
135     float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
136 
137     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
138     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
139     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
140     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
141 
142     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
143     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
144     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
145     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
146 
147     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
148     float32x4_t vf0123 = vmulq_f32(ve0123, vr0123);
149     float32x4_t vf4567 = vmulq_f32(ve4567, vr4567);
150     float32x4_t vf89AB = vmulq_f32(ve89AB, vr89AB);
151     float32x4_t vfCDEF = vmulq_f32(veCDEF, vrCDEF);
152 
153     // For inputs below denormal cutoff, replace output with +0.0f.
154     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
155     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
156     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
157     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
158     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
159 
160     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
161     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
162     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
163     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
164     const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
165 
166     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
167     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
168     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
169     vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
170 
171     vst1q_f32(y, vf0123); y += 4;
172     vst1q_f32(y, vf4567); y += 4;
173     vst1q_f32(y, vf89AB); y += 4;
174     vst1q_f32(y, vfCDEF); y += 4;
175   }
176   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
177     const float32x4_t vx = vld1q_f32(x); x += 4;
178 
179     // General structure of the algorithm:
180     //           / exp(x) / (1 + exp(x)) if x <= 0
181     //   f[x] :=
182     //           \ 1 - f[-x] if x >= 0
183     //
184     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
185     // then replace result with 1 - f[z] if x <= 0.
186     const float32x4_t vz = vabsq_f32(vx);
187 
188     // Compute reduced argument n := round(-z / log(2)).
189     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
190     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
191     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
192     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
193     // anyway. We fixup the result for such inputs at the very end of the algorithm.
194     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
195 
196     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
197     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
198     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
199 
200     // Subtract the large number back to get final n := round(-z / log(2)).
201     vn = vsubq_f32(vn, vmagic_bias);
202 
203     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
204     float32x4_t vt = vfmaq_f32(vz, vn, vln2);
205 
206     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
207     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
208     vp = vfmaq_f32(vc3, vp, vt);
209     vp = vfmaq_f32(vc2, vp, vt);
210     vp = vfmaq_f32(vc1, vp, vt);
211 
212     // Reconstruct the exp(-z) value:
213     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
214     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
215     //     = s + (t * s) * p
216     vt = vmulq_f32(vt, vs);
217     float32x4_t ve = vfmaq_f32(vs, vp, vt);
218 
219     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
220     float32x4_t vd = vaddq_f32(ve, vone);
221 
222     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
223     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
224     // Thus the reciprocal of the denominator never overflows.
225     float32x4_t vr = vrecpeq_f32(vd);
226 
227     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
228 
229     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
230 
231     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
232     float32x4_t vf = vmulq_f32(ve, vr);
233 
234     // For inputs below denormal cutoff, replace output with +0.0f.
235     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
236     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
237 
238     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
239     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
240     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
241 
242     vst1q_f32(y, vf); y += 4;
243   }
244   if XNN_UNLIKELY(n != 0) {
245     const float32x4_t vx = vld1q_f32(x);
246 
247     // General structure of the algorithm:
248     //           / exp(x) / (1 + exp(x)) if x <= 0
249     //   f[x] :=
250     //           \ 1 - f[-x] if x >= 0
251     //
252     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
253     // then replace result with 1 - f[z] if x <= 0.
254     const float32x4_t vz = vabsq_f32(vx);
255 
256     // Compute reduced argument n := round(-z / log(2)).
257     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
258     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
259     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
260     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
261     // anyway. We fixup the result for such inputs at the very end of the algorithm.
262     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
263 
264     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
265     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
266     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
267 
268     // Subtract the large number back to get final n := round(-z / log(2)).
269     vn = vsubq_f32(vn, vmagic_bias);
270 
271     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
272     float32x4_t vt = vfmaq_f32(vz, vn, vln2);
273 
274     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
275     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
276     vp = vfmaq_f32(vc3, vp, vt);
277     vp = vfmaq_f32(vc2, vp, vt);
278     vp = vfmaq_f32(vc1, vp, vt);
279 
280     // Reconstruct the exp(-z) value:
281     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
282     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
283     //     = s + (t * s) * p
284     vt = vmulq_f32(vt, vs);
285     float32x4_t ve = vfmaq_f32(vs, vp, vt);
286 
287     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
288     float32x4_t vd = vaddq_f32(ve, vone);
289 
290     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
291     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
292     // Thus the reciprocal of the denominator never overflows.
293     float32x4_t vr = vrecpeq_f32(vd);
294 
295     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
296 
297     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
298 
299     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
300     float32x4_t vf = vmulq_f32(ve, vr);
301 
302     // For inputs below denormal cutoff, replace output with +0.0f.
303     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
304     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
305 
306     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
307     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
308     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
309 
310     float32x2_t vf_lo = vget_low_f32(vf);
311     if (n & (2 * sizeof(float))) {
312       vst1_f32(y, vf_lo); y += 2;
313       vf_lo = vget_high_f32(vf);
314     }
315     if (n & (1 * sizeof(float))) {
316       vst1_lane_f32(y, vf_lo, 0);
317     }
318   }
319 }
320