1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/psimd-p5-div.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <psimd.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
xnn_f32_sigmoid_ukernel__psimd_p5_div_x12(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__psimd_p5_div_x12(
19 size_t n,
20 const float* x,
21 float* y,
22 const void* params)
23 {
24 assert(n % sizeof(float) == 0);
25
26 const psimd_f32 vmagic_bias = psimd_splat_f32(0x1.8000FEp23f);
27 // The largest z for which sigmoidf(-z) is normalized.
28 // This number is also the largest z for which expf(-z) is normalized.
29 const psimd_f32 vdenorm_cutoff = psimd_splat_f32(0x1.5D589Ep+6f);
30 const psimd_f32 vminus_log2e = psimd_splat_f32(-0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const psimd_f32 vln2_hi = psimd_splat_f32(0x1.62E400p-1f);
33 const psimd_f32 vln2_lo = psimd_splat_f32(0x1.7F7D1Cp-20f);
34 const psimd_f32 vone = psimd_splat_f32(1.0f);
35
36 const psimd_f32 vc1 = psimd_splat_f32(-0x1.FFFFF6p-1f);
37 const psimd_f32 vc2 = psimd_splat_f32( 0x1.FFFDC6p-2f);
38 const psimd_f32 vc3 = psimd_splat_f32(-0x1.555A80p-3f);
39 const psimd_f32 vc4 = psimd_splat_f32( 0x1.573A1Ap-5f);
40 const psimd_f32 vc5 = psimd_splat_f32(-0x1.0F9F9Cp-7f);
41
42 for (; n >= 12 * sizeof(float); n -= 12 * sizeof(float)) {
43 const psimd_f32 vx0123 = psimd_load_f32(x);
44 const psimd_f32 vx4567 = psimd_load_f32(x + 4);
45 const psimd_f32 vx89AB = psimd_load_f32(x + 8);
46 x += 12;
47
48 // General structure of the algorithm:
49 // / exp(x) / (1 + exp(x)) if x <= 0
50 // f[x] :=
51 // \ 1 - f[-x] if x >= 0
52 //
53 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
54 // then replace result with 1 - f[-z] if x >= 0.
55 const psimd_f32 vz0123 = psimd_abs_f32(vx0123);
56 const psimd_f32 vz4567 = psimd_abs_f32(vx4567);
57 const psimd_f32 vz89AB = psimd_abs_f32(vx89AB);
58
59 // Compute reduced argument n := round(-z / log(2)).
60 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
61 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
62 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
63 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
64 // anyway. We fixup the result for such inputs at the very end of the algorithm.
65 psimd_f32 vn0123 = psimd_qfma_f32(vmagic_bias, vz0123, vminus_log2e);
66 psimd_f32 vn4567 = psimd_qfma_f32(vmagic_bias, vz4567, vminus_log2e);
67 psimd_f32 vn89AB = psimd_qfma_f32(vmagic_bias, vz89AB, vminus_log2e);
68
69 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
70 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
71 const psimd_f32 vs0123 = (psimd_f32) ((psimd_u32) vn0123 << 23);
72 const psimd_f32 vs4567 = (psimd_f32) ((psimd_u32) vn4567 << 23);
73 const psimd_f32 vs89AB = (psimd_f32) ((psimd_u32) vn89AB << 23);
74
75 // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
76 vn0123 = psimd_sub_f32(vn0123, vmagic_bias);
77 vn4567 = psimd_sub_f32(vn4567, vmagic_bias);
78 vn89AB = psimd_sub_f32(vn89AB, vmagic_bias);
79
80 // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
81 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
82 psimd_f32 vt0123 = psimd_qfma_f32(vz0123, vn0123, vln2_hi);
83 psimd_f32 vt4567 = psimd_qfma_f32(vz4567, vn4567, vln2_hi);
84 psimd_f32 vt89AB = psimd_qfma_f32(vz89AB, vn89AB, vln2_hi);
85
86 vt0123 = psimd_qfma_f32(vt0123, vn0123, vln2_lo);
87 vt4567 = psimd_qfma_f32(vt4567, vn4567, vln2_lo);
88 vt89AB = psimd_qfma_f32(vt89AB, vn89AB, vln2_lo);
89
90 // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
91 // P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
92 psimd_f32 vp0123 = psimd_qfma_f32(vc4, vt0123, vc5);
93 psimd_f32 vp4567 = psimd_qfma_f32(vc4, vt4567, vc5);
94 psimd_f32 vp89AB = psimd_qfma_f32(vc4, vt89AB, vc5);
95
96 vp0123 = psimd_qfma_f32(vc3, vt0123, vp0123);
97 vp4567 = psimd_qfma_f32(vc3, vt4567, vp4567);
98 vp89AB = psimd_qfma_f32(vc3, vt89AB, vp89AB);
99
100 vp0123 = psimd_qfma_f32(vc2, vt0123, vp0123);
101 vp4567 = psimd_qfma_f32(vc2, vt4567, vp4567);
102 vp89AB = psimd_qfma_f32(vc2, vt89AB, vp89AB);
103
104 vp0123 = psimd_qfma_f32(vc1, vt0123, vp0123);
105 vp4567 = psimd_qfma_f32(vc1, vt4567, vp4567);
106 vp89AB = psimd_qfma_f32(vc1, vt89AB, vp89AB);
107
108 // Reconstruct the exp(-z) value:
109 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
110 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
111 // = s + (t * s) * p
112 vt0123 = psimd_mul_f32(vt0123, vs0123);
113 vt4567 = psimd_mul_f32(vt4567, vs4567);
114 vt89AB = psimd_mul_f32(vt89AB, vs89AB);
115
116 const psimd_f32 ve0123 = psimd_qfma_f32(vs0123, vt0123, vp0123);
117 const psimd_f32 ve4567 = psimd_qfma_f32(vs4567, vt4567, vp4567);
118 const psimd_f32 ve89AB = psimd_qfma_f32(vs89AB, vt89AB, vp89AB);
119
120 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
121 psimd_f32 vf0123 = psimd_div_f32(ve0123, psimd_add_f32(ve0123, vone));
122 psimd_f32 vf4567 = psimd_div_f32(ve4567, psimd_add_f32(ve4567, vone));
123 psimd_f32 vf89AB = psimd_div_f32(ve89AB, psimd_add_f32(ve89AB, vone));
124
125 // For inputs above denormal cutoff, replace output with +0.0f.
126 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
127 vf0123 = psimd_andnotmask_f32(vz0123 > vdenorm_cutoff, vf0123);
128 vf4567 = psimd_andnotmask_f32(vz4567 > vdenorm_cutoff, vf4567);
129 vf89AB = psimd_andnotmask_f32(vz89AB > vdenorm_cutoff, vf89AB);
130
131 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
132 vf0123 = psimd_signblend_f32(vx0123, vf0123, psimd_sub_f32(vone, vf0123));
133 vf4567 = psimd_signblend_f32(vx4567, vf4567, psimd_sub_f32(vone, vf4567));
134 vf89AB = psimd_signblend_f32(vx89AB, vf89AB, psimd_sub_f32(vone, vf89AB));
135
136 psimd_store_f32(y, vf0123);
137 psimd_store_f32(y + 4, vf4567);
138 psimd_store_f32(y + 8, vf89AB);
139 y += 12;
140 }
141 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
142 const psimd_f32 vx = psimd_load_f32(x);
143 x += 4;
144
145 // General structure of the algorithm:
146 // / exp(x) / (1 + exp(x)) if x <= 0
147 // f[x] :=
148 // \ 1 - f[-x] if x >= 0
149 //
150 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
151 // then replace result with 1 - f[-z] if x >= 0.
152 const psimd_f32 vz = psimd_abs_f32(vx);
153
154 // Compute reduced argument n := round(-z / log(2)).
155 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
156 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
157 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
158 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
159 // anyway. We fixup the result for such inputs at the very end of the algorithm.
160 psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vz, vminus_log2e);
161
162 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
163 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
164 const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
165
166 // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
167 vn = psimd_sub_f32(vn, vmagic_bias);
168
169 // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
170 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
171 psimd_f32 vt = psimd_qfma_f32(vz, vn, vln2_hi);
172 vt = psimd_qfma_f32(vt, vn, vln2_lo);
173
174 // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
175 // P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
176 psimd_f32 vp = psimd_qfma_f32(vc4, vt, vc5);
177 vp = psimd_qfma_f32(vc3, vt, vp);
178 vp = psimd_qfma_f32(vc2, vt, vp);
179 vp = psimd_qfma_f32(vc1, vt, vp);
180
181 // Reconstruct the exp(-z) value:
182 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
183 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
184 // = s + (t * s) * p
185 vt = psimd_mul_f32(vt, vs);
186 const psimd_f32 ve = psimd_qfma_f32(vs, vt, vp);
187
188 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
189 psimd_f32 vf = psimd_div_f32(ve, psimd_add_f32(ve, vone));
190
191 // For inputs above denormal cutoff, replace output with +0.0f.
192 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
193 vf = psimd_andnotmask_f32(vz > vdenorm_cutoff, vf);
194
195 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
196 vf = psimd_signblend_f32(vx, vf, psimd_sub_f32(vone, vf));
197
198 psimd_store_f32(y, vf);
199 y += 4;
200 }
201 if XNN_UNLIKELY(n != 0) {
202 const psimd_f32 vx = psimd_load_f32(x);
203
204 // General structure of the algorithm:
205 // / exp(x) / (1 + exp(x)) if x <= 0
206 // f[x] :=
207 // \ 1 - f[-x] if x >= 0
208 //
209 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
210 // then replace result with 1 - f[-z] if x >= 0.
211 const psimd_f32 vz = psimd_abs_f32(vx);
212
213 // Compute reduced argument n := round(-z / log(2)).
214 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
215 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
216 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
217 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
218 // anyway. We fixup the result for such inputs at the very end of the algorithm.
219 psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vz, vminus_log2e);
220
221 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
222 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
223 const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
224
225 // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
226 vn = psimd_sub_f32(vn, vmagic_bias);
227
228 // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
229 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
230 psimd_f32 vt = psimd_qfma_f32(vz, vn, vln2_hi);
231 vt = psimd_qfma_f32(vt, vn, vln2_lo);
232
233 // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
234 // P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
235 psimd_f32 vp = psimd_qfma_f32(vc4, vt, vc5);
236 vp = psimd_qfma_f32(vc3, vt, vp);
237 vp = psimd_qfma_f32(vc2, vt, vp);
238 vp = psimd_qfma_f32(vc1, vt, vp);
239
240 // Reconstruct the exp(-z) value:
241 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
242 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
243 // = s + (t * s) * p
244 vt = psimd_mul_f32(vt, vs);
245 const psimd_f32 ve = psimd_qfma_f32(vs, vt, vp);
246
247 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
248 psimd_f32 vf = psimd_div_f32(ve, psimd_add_f32(ve, vone));
249
250 // For inputs above denormal cutoff, replace output with +0.0f.
251 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
252 vf = psimd_andnotmask_f32(vz > vdenorm_cutoff, vf);
253
254 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
255 vf = psimd_signblend_f32(vx, vf, psimd_sub_f32(vone, vf));
256
257 if (n & (2 * sizeof(float))) {
258 psimd_store2_f32(y, vf);
259 vf = psimd_concat_hi_f32(vf, vf);
260 y += 2;
261 }
262 if (n & (1 * sizeof(float))) {
263 psimd_store1_f32(y, vf);
264 }
265 }
266 }
267