1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/psimd-p5-div.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <psimd.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
xnn_f32_sigmoid_ukernel__psimd_p5_div_x8(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__psimd_p5_div_x8(
19 size_t n,
20 const float* x,
21 float* y,
22 const void* params)
23 {
24 assert(n % sizeof(float) == 0);
25
26 const psimd_f32 vmagic_bias = psimd_splat_f32(0x1.8000FEp23f);
27 // The largest z for which sigmoidf(-z) is normalized.
28 // This number is also the largest z for which expf(-z) is normalized.
29 const psimd_f32 vdenorm_cutoff = psimd_splat_f32(0x1.5D589Ep+6f);
30 const psimd_f32 vminus_log2e = psimd_splat_f32(-0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const psimd_f32 vln2_hi = psimd_splat_f32(0x1.62E400p-1f);
33 const psimd_f32 vln2_lo = psimd_splat_f32(0x1.7F7D1Cp-20f);
34 const psimd_f32 vone = psimd_splat_f32(1.0f);
35
36 const psimd_f32 vc1 = psimd_splat_f32(-0x1.FFFFF6p-1f);
37 const psimd_f32 vc2 = psimd_splat_f32( 0x1.FFFDC6p-2f);
38 const psimd_f32 vc3 = psimd_splat_f32(-0x1.555A80p-3f);
39 const psimd_f32 vc4 = psimd_splat_f32( 0x1.573A1Ap-5f);
40 const psimd_f32 vc5 = psimd_splat_f32(-0x1.0F9F9Cp-7f);
41
42 for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
43 const psimd_f32 vx0123 = psimd_load_f32(x);
44 const psimd_f32 vx4567 = psimd_load_f32(x + 4);
45 x += 8;
46
47 // General structure of the algorithm:
48 // / exp(x) / (1 + exp(x)) if x <= 0
49 // f[x] :=
50 // \ 1 - f[-x] if x >= 0
51 //
52 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
53 // then replace result with 1 - f[-z] if x >= 0.
54 const psimd_f32 vz0123 = psimd_abs_f32(vx0123);
55 const psimd_f32 vz4567 = psimd_abs_f32(vx4567);
56
57 // Compute reduced argument n := round(-z / log(2)).
58 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
59 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
60 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
61 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
62 // anyway. We fixup the result for such inputs at the very end of the algorithm.
63 psimd_f32 vn0123 = psimd_qfma_f32(vmagic_bias, vz0123, vminus_log2e);
64 psimd_f32 vn4567 = psimd_qfma_f32(vmagic_bias, vz4567, vminus_log2e);
65
66 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
67 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
68 const psimd_f32 vs0123 = (psimd_f32) ((psimd_u32) vn0123 << 23);
69 const psimd_f32 vs4567 = (psimd_f32) ((psimd_u32) vn4567 << 23);
70
71 // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
72 vn0123 = psimd_sub_f32(vn0123, vmagic_bias);
73 vn4567 = psimd_sub_f32(vn4567, vmagic_bias);
74
75 // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
76 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
77 psimd_f32 vt0123 = psimd_qfma_f32(vz0123, vn0123, vln2_hi);
78 psimd_f32 vt4567 = psimd_qfma_f32(vz4567, vn4567, vln2_hi);
79
80 vt0123 = psimd_qfma_f32(vt0123, vn0123, vln2_lo);
81 vt4567 = psimd_qfma_f32(vt4567, vn4567, vln2_lo);
82
83 // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
84 // P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
85 psimd_f32 vp0123 = psimd_qfma_f32(vc4, vt0123, vc5);
86 psimd_f32 vp4567 = psimd_qfma_f32(vc4, vt4567, vc5);
87
88 vp0123 = psimd_qfma_f32(vc3, vt0123, vp0123);
89 vp4567 = psimd_qfma_f32(vc3, vt4567, vp4567);
90
91 vp0123 = psimd_qfma_f32(vc2, vt0123, vp0123);
92 vp4567 = psimd_qfma_f32(vc2, vt4567, vp4567);
93
94 vp0123 = psimd_qfma_f32(vc1, vt0123, vp0123);
95 vp4567 = psimd_qfma_f32(vc1, vt4567, vp4567);
96
97 // Reconstruct the exp(-z) value:
98 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
99 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
100 // = s + (t * s) * p
101 vt0123 = psimd_mul_f32(vt0123, vs0123);
102 vt4567 = psimd_mul_f32(vt4567, vs4567);
103
104 const psimd_f32 ve0123 = psimd_qfma_f32(vs0123, vt0123, vp0123);
105 const psimd_f32 ve4567 = psimd_qfma_f32(vs4567, vt4567, vp4567);
106
107 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
108 psimd_f32 vf0123 = psimd_div_f32(ve0123, psimd_add_f32(ve0123, vone));
109 psimd_f32 vf4567 = psimd_div_f32(ve4567, psimd_add_f32(ve4567, vone));
110
111 // For inputs above denormal cutoff, replace output with +0.0f.
112 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
113 vf0123 = psimd_andnotmask_f32(vz0123 > vdenorm_cutoff, vf0123);
114 vf4567 = psimd_andnotmask_f32(vz4567 > vdenorm_cutoff, vf4567);
115
116 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
117 vf0123 = psimd_signblend_f32(vx0123, vf0123, psimd_sub_f32(vone, vf0123));
118 vf4567 = psimd_signblend_f32(vx4567, vf4567, psimd_sub_f32(vone, vf4567));
119
120 psimd_store_f32(y, vf0123);
121 psimd_store_f32(y + 4, vf4567);
122 y += 8;
123 }
124 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
125 const psimd_f32 vx = psimd_load_f32(x);
126 x += 4;
127
128 // General structure of the algorithm:
129 // / exp(x) / (1 + exp(x)) if x <= 0
130 // f[x] :=
131 // \ 1 - f[-x] if x >= 0
132 //
133 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
134 // then replace result with 1 - f[-z] if x >= 0.
135 const psimd_f32 vz = psimd_abs_f32(vx);
136
137 // Compute reduced argument n := round(-z / log(2)).
138 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
139 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
140 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
141 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
142 // anyway. We fixup the result for such inputs at the very end of the algorithm.
143 psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vz, vminus_log2e);
144
145 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
146 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
147 const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
148
149 // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
150 vn = psimd_sub_f32(vn, vmagic_bias);
151
152 // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
153 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
154 psimd_f32 vt = psimd_qfma_f32(vz, vn, vln2_hi);
155 vt = psimd_qfma_f32(vt, vn, vln2_lo);
156
157 // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
158 // P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
159 psimd_f32 vp = psimd_qfma_f32(vc4, vt, vc5);
160 vp = psimd_qfma_f32(vc3, vt, vp);
161 vp = psimd_qfma_f32(vc2, vt, vp);
162 vp = psimd_qfma_f32(vc1, vt, vp);
163
164 // Reconstruct the exp(-z) value:
165 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
166 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
167 // = s + (t * s) * p
168 vt = psimd_mul_f32(vt, vs);
169 const psimd_f32 ve = psimd_qfma_f32(vs, vt, vp);
170
171 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
172 psimd_f32 vf = psimd_div_f32(ve, psimd_add_f32(ve, vone));
173
174 // For inputs above denormal cutoff, replace output with +0.0f.
175 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
176 vf = psimd_andnotmask_f32(vz > vdenorm_cutoff, vf);
177
178 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
179 vf = psimd_signblend_f32(vx, vf, psimd_sub_f32(vone, vf));
180
181 psimd_store_f32(y, vf);
182 y += 4;
183 }
184 if XNN_UNLIKELY(n != 0) {
185 const psimd_f32 vx = psimd_load_f32(x);
186
187 // General structure of the algorithm:
188 // / exp(x) / (1 + exp(x)) if x <= 0
189 // f[x] :=
190 // \ 1 - f[-x] if x >= 0
191 //
192 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
193 // then replace result with 1 - f[-z] if x >= 0.
194 const psimd_f32 vz = psimd_abs_f32(vx);
195
196 // Compute reduced argument n := round(-z / log(2)).
197 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
198 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
199 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
200 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
201 // anyway. We fixup the result for such inputs at the very end of the algorithm.
202 psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vz, vminus_log2e);
203
204 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
205 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
206 const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
207
208 // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
209 vn = psimd_sub_f32(vn, vmagic_bias);
210
211 // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
212 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
213 psimd_f32 vt = psimd_qfma_f32(vz, vn, vln2_hi);
214 vt = psimd_qfma_f32(vt, vn, vln2_lo);
215
216 // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
217 // P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
218 psimd_f32 vp = psimd_qfma_f32(vc4, vt, vc5);
219 vp = psimd_qfma_f32(vc3, vt, vp);
220 vp = psimd_qfma_f32(vc2, vt, vp);
221 vp = psimd_qfma_f32(vc1, vt, vp);
222
223 // Reconstruct the exp(-z) value:
224 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
225 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
226 // = s + (t * s) * p
227 vt = psimd_mul_f32(vt, vs);
228 const psimd_f32 ve = psimd_qfma_f32(vs, vt, vp);
229
230 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
231 psimd_f32 vf = psimd_div_f32(ve, psimd_add_f32(ve, vone));
232
233 // For inputs above denormal cutoff, replace output with +0.0f.
234 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
235 vf = psimd_andnotmask_f32(vz > vdenorm_cutoff, vf);
236
237 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
238 vf = psimd_signblend_f32(vx, vf, psimd_sub_f32(vone, vf));
239
240 if (n & (2 * sizeof(float))) {
241 psimd_store2_f32(y, vf);
242 vf = psimd_concat_hi_f32(vf, vf);
243 y += 2;
244 }
245 if (n & (1 * sizeof(float))) {
246 psimd_store1_f32(y, vf);
247 }
248 }
249 }
250