• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/scalar-lut2048-p1-div.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 #include <math.h>
12 
13 #include <xnnpack/common.h>
14 #include <xnnpack/vunary.h>
15 
16 #include <fp16/bitcasts.h>
17 
18 
19 // Note redefine as uint32[] to avoid redundant bitcasts.
20 extern XNN_INTERNAL const uint32_t xnn_table_exp2_k_over_2048[2048];
21 
xnn_f32_sigmoid_ukernel__scalar_lut2048_p1_div_x4(size_t n,const float * x,float * y,const void * params)22 void xnn_f32_sigmoid_ukernel__scalar_lut2048_p1_div_x4(
23     size_t n,
24     const float* x,
25     float* y,
26     const void* params)
27 {
28   assert(n % sizeof(float) == 0);
29 
30   const float vmagic_bias = 0x1.800000p23f;
31   // The largest z for which sigmoidf(-z) is normalized.
32   // This number is also the largest z for which expf(-z) is normalized.
33   const float vdenorm_cutoff = 0x1.5D589Ep+6f;
34   const float vminus_log2e_x2048 = -0x1.715476p11f;
35   // Last 18 bits are zeroes
36   const float vln2_o2048_hi = 0x1.600000p-12f;
37   const float vln2_o2048_lo = 0x1.7217F8p-19f;
38   const float vone = 1.0f;
39 
40   const float vc1 = -0x1.FFFFFEp-1f;
41 
42   const uint32_t vindex_mask = UINT32_C(0x7FF);
43 
44   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
45     const float vx0 = x[0];
46     const float vx1 = x[1];
47     const float vx2 = x[2];
48     const float vx3 = x[3];
49     x += 4;
50 
51     // General structure of the algorithm:
52     //           / exp(x) / (1 + exp(x)) if x <= 0
53     //   f[x] :=
54     //           \ 1 - f[-x] if x >= 0
55     //
56     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
57     // then replace result with 1 - f[-z] if x >= 0.
58     const float vz0 = fabsf(vx0);
59     const float vz1 = fabsf(vx1);
60     const float vz2 = fabsf(vx2);
61     const float vz3 = fabsf(vx3);
62 
63     // Compute reduced argument n := round(-z * 2048 / log(2)).
64     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
65     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
66     // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
67     // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
68     // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
69     // for such inputs at the very end of the algorithm.
70     float vn0 = vz0 * vminus_log2e_x2048 + vmagic_bias;
71     float vn1 = vz1 * vminus_log2e_x2048 + vmagic_bias;
72     float vn2 = vz2 * vminus_log2e_x2048 + vmagic_bias;
73     float vn3 = vz3 * vminus_log2e_x2048 + vmagic_bias;
74 
75     // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
76     // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
77     // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
78     // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from table using the 6 low bits of n, as integer.
79     //    Note that the fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
80     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
81     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
82     //    and thus the adjusted exponent is not lower than -126.
83     //
84     // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
85     const uint32_t ve0 = (fp32_to_bits(vn0) & ~vindex_mask) << 12;
86     const uint32_t ve1 = (fp32_to_bits(vn1) & ~vindex_mask) << 12;
87     const uint32_t ve2 = (fp32_to_bits(vn2) & ~vindex_mask) << 12;
88     const uint32_t ve3 = (fp32_to_bits(vn3) & ~vindex_mask) << 12;
89 
90     // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
91     const uint32_t vidx0 = fp32_to_bits(vn0) & vindex_mask;
92     const uint32_t vidx1 = fp32_to_bits(vn1) & vindex_mask;
93     const uint32_t vidx2 = fp32_to_bits(vn2) & vindex_mask;
94     const uint32_t vidx3 = fp32_to_bits(vn3) & vindex_mask;
95     // Adjust exponent of the value l fetched from the table to get the final s value.
96     const float vs0 = fp32_from_bits(xnn_table_exp2_k_over_2048[vidx0] + ve0);
97     const float vs1 = fp32_from_bits(xnn_table_exp2_k_over_2048[vidx1] + ve1);
98     const float vs2 = fp32_from_bits(xnn_table_exp2_k_over_2048[vidx2] + ve2);
99     const float vs3 = fp32_from_bits(xnn_table_exp2_k_over_2048[vidx3] + ve3);
100 
101     // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
102     vn0 -= vmagic_bias;
103     vn1 -= vmagic_bias;
104     vn2 -= vmagic_bias;
105     vn3 -= vmagic_bias;
106 
107     // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
108     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
109     float vt0 = vn0 * vln2_o2048_hi + vz0;
110     float vt1 = vn1 * vln2_o2048_hi + vz1;
111     float vt2 = vn2 * vln2_o2048_hi + vz2;
112     float vt3 = vn3 * vln2_o2048_hi + vz3;
113 
114     vt0 = vn0 * vln2_o2048_lo + vt0;
115     vt1 = vn1 * vln2_o2048_lo + vt1;
116     vt2 = vn2 * vln2_o2048_lo + vt2;
117     vt3 = vn3 * vln2_o2048_lo + vt3;
118 
119     // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/4096, log(2)/4096]:
120     //   P1(t) = 1 + t * c1
121     const float vp0 = vt0 * vc1;
122     const float vp1 = vt1 * vc1;
123     const float vp2 = vt2 * vc1;
124     const float vp3 = vt3 * vc1;
125 
126     // Reconstruct the exp(-z) value:
127     //   y = s * (1 + t * c1)
128     //     = s + s * (t * c1))
129     //     = s + s * p
130     const float vy0 = vp0 * vs0 + vs0;
131     const float vy1 = vp1 * vs1 + vs1;
132     const float vy2 = vp2 * vs2 + vs2;
133     const float vy3 = vp3 * vs3 + vs3;
134 
135     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
136     float vf0 = vy0 / (vy0 + vone);
137     float vf1 = vy1 / (vy1 + vone);
138     float vf2 = vy2 / (vy2 + vone);
139     float vf3 = vy3 / (vy3 + vone);
140 
141     // For inputs above denormal cutoff, replace output with +0.0f.
142     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
143     if XNN_UNPREDICTABLE(vz0 > vdenorm_cutoff) {
144       vf0 = 0.0f;
145     }
146     if XNN_UNPREDICTABLE(vz1 > vdenorm_cutoff) {
147       vf1 = 0.0f;
148     }
149     if XNN_UNPREDICTABLE(vz2 > vdenorm_cutoff) {
150       vf2 = 0.0f;
151     }
152     if XNN_UNPREDICTABLE(vz3 > vdenorm_cutoff) {
153       vf3 = 0.0f;
154     }
155 
156     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
157     if XNN_UNPREDICTABLE(vx0 > 0.0f) {
158       vf0 = vone - vf0;
159     }
160     if XNN_UNPREDICTABLE(vx1 > 0.0f) {
161       vf1 = vone - vf1;
162     }
163     if XNN_UNPREDICTABLE(vx2 > 0.0f) {
164       vf2 = vone - vf2;
165     }
166     if XNN_UNPREDICTABLE(vx3 > 0.0f) {
167       vf3 = vone - vf3;
168     }
169 
170     y[0] = vf0;
171     y[1] = vf1;
172     y[2] = vf2;
173     y[3] = vf3;
174     y += 4;
175   }
176   if XNN_UNLIKELY(n != 0) {
177     do {
178       const float vx = *x++;
179 
180       // General structure of the algorithm:
181       //           / exp(x) / (1 + exp(x)) if x <= 0
182       //   f[x] :=
183       //           \ 1 - f[-x] if x >= 0
184       //
185       // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
186       // then replace result with 1 - f[-z] if x >= 0.
187       const float vz = fabsf(vx);
188 
189       // Compute reduced argument n := round(-z * 2048 / log(2)).
190       // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
191       // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
192       // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
193       // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
194       // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
195       // for such inputs at the very end of the algorithm.
196       float vn = vz * vminus_log2e_x2048 + vmagic_bias;
197 
198       // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
199       // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
200       // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
201       // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from table using the 6 low bits of n, as integer.
202       //    Note that the fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
203       // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
204       //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
205       //    and thus the adjusted exponent is not lower than -126.
206       //
207       // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
208       const uint32_t ve = (fp32_to_bits(vn) & ~vindex_mask) << 12;
209 
210       // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
211       const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
212       // Adjust exponent of the value l fetched from the table to get the final s value.
213       const float vs = fp32_from_bits(xnn_table_exp2_k_over_2048[vidx] + ve);
214 
215       // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
216       vn -= vmagic_bias;
217 
218       // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
219       // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
220       float vt = vn * vln2_o2048_hi + vz;
221       vt = vn * vln2_o2048_lo + vt;
222 
223       // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/4096, log(2)/4096]:
224       //   P1(t) = 1 + t * c1
225       const float vp = vt * vc1;
226 
227       // Reconstruct the exp(-z) value:
228       //   y = s * (1 + t * c1)
229       //     = s + s * (t * c1))
230       //     = s + s * p
231       const float vy = vp * vs + vs;
232 
233       // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
234       float vf = vy / (vy + vone);
235 
236       // For inputs above denormal cutoff, replace output with +0.0f.
237       // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
238       if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) {
239         vf = 0.0f;
240       }
241 
242       // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
243       if XNN_UNPREDICTABLE(vx > 0.0f) {
244         vf = vone - vf;
245       }
246 
247       *y++ = vf;
248 
249       n -= sizeof(float);
250     } while (n != 0);
251   }
252 }
253