• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/scalar-lut64-p2-div.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 #include <math.h>
12 
13 #include <xnnpack/common.h>
14 #include <xnnpack/vunary.h>
15 
16 #include <fp16/bitcasts.h>
17 
18 
19 // Note redefine as uint32[] to avoid redundant bitcasts.
20 extern XNN_INTERNAL const uint32_t xnn_table_exp2_k_over_64[64];
21 
xnn_f32_sigmoid_ukernel__scalar_lut64_p2_div_x4(size_t n,const float * x,float * y,const void * params)22 void xnn_f32_sigmoid_ukernel__scalar_lut64_p2_div_x4(
23     size_t n,
24     const float* x,
25     float* y,
26     const void* params)
27 {
28   assert(n % sizeof(float) == 0);
29 
30   const float vmagic_bias = 0x1.800000p23f;
31   // The largest z for which sigmoidf(-z) is normalized.
32   // This number is also the largest z for which expf(-z) is normalized.
33   const float vdenorm_cutoff = 0x1.5D589Ep+6f;
34   const float vminus_log2e_x64 = -0x1.715476p6f;
35   // Last 13 bits are zeroes
36   const float vln2_o64_hi =  0x1.630000p-7f;
37   const float vln2_o64_lo = -0x1.BD0106p-19f;
38   const float vone = 1.0f;
39 
40   const float vc2 = 0x1.FFFF0Ap-2f;
41 
42   const uint32_t vindex_mask = UINT32_C(0x3F);
43 
44   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
45     const float vx0 = x[0];
46     const float vx1 = x[1];
47     const float vx2 = x[2];
48     const float vx3 = x[3];
49     x += 4;
50 
51     // General structure of the algorithm:
52     //           / exp(x) / (1 + exp(x)) if x <= 0
53     //   f[x] :=
54     //           \ 1 - f[-x] if x >= 0
55     //
56     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
57     // then replace result with 1 - f[-z] if x >= 0.
58     const float vz0 = fabsf(vx0);
59     const float vz1 = fabsf(vx1);
60     const float vz2 = fabsf(vx2);
61     const float vz3 = fabsf(vx3);
62 
63     // Compute reduced argument n := round(-z * 64 / log(2)).
64     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
65     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
66     // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
67     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of
68     // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
69     // for such inputs at the very end of the algorithm.
70     float vn0 = vz0 * vminus_log2e_x64 + vmagic_bias;
71     float vn1 = vz1 * vminus_log2e_x64 + vmagic_bias;
72     float vn2 = vz2 * vminus_log2e_x64 + vmagic_bias;
73     float vn3 = vz3 * vminus_log2e_x64 + vmagic_bias;
74 
75     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
76     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
77     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
78     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note
79     //    that the fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
80     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
81     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
82     //    and thus the adjusted exponent is not lower than -126.
83     //
84     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
85     const uint32_t ve0 = (fp32_to_bits(vn0) & ~vindex_mask) << 17;
86     const uint32_t ve1 = (fp32_to_bits(vn1) & ~vindex_mask) << 17;
87     const uint32_t ve2 = (fp32_to_bits(vn2) & ~vindex_mask) << 17;
88     const uint32_t ve3 = (fp32_to_bits(vn3) & ~vindex_mask) << 17;
89 
90     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
91     const uint32_t vidx0 = fp32_to_bits(vn0) & vindex_mask;
92     const uint32_t vidx1 = fp32_to_bits(vn1) & vindex_mask;
93     const uint32_t vidx2 = fp32_to_bits(vn2) & vindex_mask;
94     const uint32_t vidx3 = fp32_to_bits(vn3) & vindex_mask;
95     // Adjust exponent of the value l fetched from the table to get the final s value.
96     const float vs0 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx0] + ve0);
97     const float vs1 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx1] + ve1);
98     const float vs2 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx2] + ve2);
99     const float vs3 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx3] + ve3);
100 
101     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
102     vn0 -= vmagic_bias;
103     vn1 -= vmagic_bias;
104     vn2 -= vmagic_bias;
105     vn3 -= vmagic_bias;
106 
107     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
108     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
109     float vt0 = vn0 * vln2_o64_hi + vz0;
110     float vt1 = vn1 * vln2_o64_hi + vz1;
111     float vt2 = vn2 * vln2_o64_hi + vz2;
112     float vt3 = vn3 * vln2_o64_hi + vz3;
113 
114     vt0 = vn0 * vln2_o64_lo + vt0;
115     vt1 = vn1 * vln2_o64_lo + vt1;
116     vt2 = vn2 * vln2_o64_lo + vt2;
117     vt3 = vn3 * vln2_o64_lo + vt3;
118 
119     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
120     //   P1(t) = 1 + t * (-1 + t * c2)
121     float vp0 = vt0 * vc2;
122     float vp1 = vt1 * vc2;
123     float vp2 = vt2 * vc2;
124     float vp3 = vt3 * vc2;
125 
126     vp0 = vt0 - vp0 * vt0;
127     vp1 = vt1 - vp1 * vt1;
128     vp2 = vt2 - vp2 * vt2;
129     vp3 = vt3 - vp3 * vt3;
130 
131     // Reconstruct the final f value:
132     //   f = s * (1 + t * (-1 + t * c2))
133     //     = s * (1 - t + t * (t * c2))
134     //     = s - s * (t - t * (t * c2))
135     //     = s - s * p
136     const float vy0 = vs0 - vs0 * vp0;
137     const float vy1 = vs1 - vs1 * vp1;
138     const float vy2 = vs2 - vs2 * vp2;
139     const float vy3 = vs3 - vs3 * vp3;
140 
141     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
142     float vf0 = vy0 / (vy0 + vone);
143     float vf1 = vy1 / (vy1 + vone);
144     float vf2 = vy2 / (vy2 + vone);
145     float vf3 = vy3 / (vy3 + vone);
146 
147     // For inputs below denormal cutoff, replace output with +0.0f.
148     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
149     if XNN_UNPREDICTABLE(vz0 > vdenorm_cutoff) {
150       vf0 = 0.0f;
151     }
152     if XNN_UNPREDICTABLE(vz1 > vdenorm_cutoff) {
153       vf1 = 0.0f;
154     }
155     if XNN_UNPREDICTABLE(vz2 > vdenorm_cutoff) {
156       vf2 = 0.0f;
157     }
158     if XNN_UNPREDICTABLE(vz3 > vdenorm_cutoff) {
159       vf3 = 0.0f;
160     }
161 
162     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
163     if XNN_UNPREDICTABLE(vx0 > 0.0f) {
164       vf0 = vone - vf0;
165     }
166     if XNN_UNPREDICTABLE(vx1 > 0.0f) {
167       vf1 = vone - vf1;
168     }
169     if XNN_UNPREDICTABLE(vx2 > 0.0f) {
170       vf2 = vone - vf2;
171     }
172     if XNN_UNPREDICTABLE(vx3 > 0.0f) {
173       vf3 = vone - vf3;
174     }
175 
176     y[0] = vf0;
177     y[1] = vf1;
178     y[2] = vf2;
179     y[3] = vf3;
180     y += 4;
181   }
182   if XNN_UNLIKELY(n != 0) {
183     do {
184       const float vx = *x++;
185 
186       // General structure of the algorithm:
187       //           / exp(x) / (1 + exp(x)) if x <= 0
188       //   f[x] :=
189       //           \ 1 - f[-x] if x >= 0
190       //
191       // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
192       // then replace result with 1 - f[-z] if x >= 0.
193       const float vz = fabsf(vx);
194 
195       // Compute reduced argument n := round(-z * 64 / log(2)).
196       // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
197       // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
198       // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
199       // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of
200       // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
201       // for such inputs at the very end of the algorithm.
202       float vn = vz * vminus_log2e_x64 + vmagic_bias;
203 
204       // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
205       // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
206       // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
207       // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note
208       //    that the fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
209       // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
210       //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
211       //    and thus the adjusted exponent is not lower than -126.
212       //
213       // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
214       const uint32_t ve = (fp32_to_bits(vn) & ~vindex_mask) << 17;
215 
216       // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
217       const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
218       // Adjust exponent of the value l fetched from the table to get the final s value.
219       const float vs = fp32_from_bits(xnn_table_exp2_k_over_64[vidx] + ve);
220 
221       // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
222       vn -= vmagic_bias;
223 
224       // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
225       // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
226       float vt = vn * vln2_o64_hi + vz;
227       vt = vn * vln2_o64_lo + vt;
228 
229       // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
230       //   P1(t) = 1 + t * (-1 + t * c2)
231       float vp = vt * vc2;
232       vp = vt - vp * vt;
233 
234       // Reconstruct the final f value:
235       //   f = s * (1 + t * (-1 + t * c2))
236       //     = s * (1 - t + t * (t * c2))
237       //     = s - s * (t - t * (t * c2))
238       //     = s - s * p
239       const float vy = vs - vs * vp;
240 
241       // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
242       float vf = vy / (vy + vone);
243 
244       // For inputs below denormal cutoff, replace output with +0.0f.
245       // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
246       if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) {
247         vf = 0.0f;
248       }
249 
250       // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
251       if XNN_UNPREDICTABLE(vx > 0.0f) {
252         vf = vone - vf;
253       }
254 
255       *y++ = vf;
256 
257       n -= sizeof(float);
258     } while (n != 0);
259   }
260 }
261