1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/sse-p5-div.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <emmintrin.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
xnn_f32_sigmoid_ukernel__sse2_p5_div_x8(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__sse2_p5_div_x8(
19 size_t n,
20 const float* x,
21 float* y,
22 const void* params)
23 {
24 assert(n % sizeof(float) == 0);
25
26 const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
27 // The smallest x for which sigmoidf(x) is normalized.
28 // This number is also the smallest x for which expf(x) is normalized.
29 const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep+6f);
30 const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33 const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34 const __m128 vone = _mm_set1_ps(1.0f);
35 const __m128 vsign_mask = _mm_set1_ps(-0.0f);
36
37 const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
38 const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
39 const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
40 const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
41 const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
42
43 for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
44 const __m128 vx0123 = _mm_loadu_ps(x);
45 const __m128 vx4567 = _mm_loadu_ps(x + 4);
46
47 // General structure of the algorithm:
48 // / exp(x) / (1 + exp(x)) if x <= 0
49 // f[x] :=
50 // \ 1 - f[-x] if x >= 0
51 //
52 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
53 // then replace result with 1 - f[z] if x >= 0.
54 const __m128 vz0123 = _mm_or_ps(vx0123, vsign_mask);
55 const __m128 vz4567 = _mm_or_ps(vx4567, vsign_mask);
56
57 // Compute reduced argument n := round(z / log(2)).
58 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
59 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
60 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
61 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
62 // the algorithm.
63 __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vz0123, vlog2e), vmagic_bias);
64 __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vz4567, vlog2e), vmagic_bias);
65
66 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
67 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
68 const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
69 const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
70
71 // Subtract the large number back to get final n := round(z / log(2)).
72 vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
73 vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
74
75 // Compute reduced argument t := z - n * log(2).
76 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
77 __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vz0123);
78 __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vz4567);
79
80 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
81 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
82
83 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
84 __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
85 __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
86
87 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
88 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
89
90 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
91 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
92
93 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
94 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
95
96 // Reconstruct the exp(z) value:
97 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
98 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
99 // = s + (t * s) * p
100 vt0123 = _mm_mul_ps(vt0123, vs0123);
101 vt4567 = _mm_mul_ps(vt4567, vs4567);
102
103 __m128 ve0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
104 __m128 ve4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
105
106 // Denominator of the sigmoid fraction: 1.0 + exp(z)
107 __m128 vd0123 = _mm_add_ps(ve0123, vone);
108 __m128 vd4567 = _mm_add_ps(ve4567, vone);
109
110 // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
111 __m128 vf0123 = _mm_div_ps(ve0123, vd0123);
112 __m128 vf4567 = _mm_div_ps(ve4567, vd4567);
113
114 // For inputs below denormal cutoff, replace output with +0.0f.
115 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
116 vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vz0123, vdenorm_cutoff), vf0123);
117 vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vz4567, vdenorm_cutoff), vf4567);
118
119 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
120 __m128 vm0123 = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx0123)));
121 __m128 vm4567 = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx4567)));
122
123 vf0123 = _mm_or_ps(_mm_and_ps(vf0123, vm0123), _mm_andnot_ps(vm0123, _mm_sub_ps(vone, vf0123)));
124 vf4567 = _mm_or_ps(_mm_and_ps(vf4567, vm4567), _mm_andnot_ps(vm4567, _mm_sub_ps(vone, vf4567)));
125
126 _mm_storeu_ps(y, vf0123);
127 _mm_storeu_ps(y + 4, vf4567);
128
129 x += 8;
130 y += 8;
131 }
132 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
133 const __m128 vx = _mm_loadu_ps(x);
134
135 // General structure of the algorithm:
136 // / exp(x) / (1 + exp(x)) if x <= 0
137 // f[x] :=
138 // \ 1 - f[-x] if x >= 0
139 //
140 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
141 // then replace result with 1 - f[z] if x >= 0.
142 const __m128 vz = _mm_or_ps(vx, vsign_mask);
143
144 // Compute reduced argument n := round(z / log(2)).
145 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
146 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
147 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
148 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
149 // the algorithm.
150 __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias);
151
152 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
153 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
154 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
155
156 // Subtract the large number back to get final n := round(z / log(2)).
157 vn = _mm_sub_ps(vn, vmagic_bias);
158
159 // Compute reduced argument t := z - n * log(2).
160 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
161 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz);
162 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
163
164 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
165 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
166 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
167 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
168 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
169
170 // Reconstruct the exp(z) value:
171 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
172 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
173 // = s + (t * s) * p
174 vt = _mm_mul_ps(vt, vs);
175 __m128 ve = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
176
177 // Denominator of the sigmoid fraction: 1.0 + exp(z)
178 __m128 vd = _mm_add_ps(ve, vone);
179
180 // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
181 __m128 vf = _mm_div_ps(ve, vd);
182
183 // For inputs below denormal cutoff, replace output with +0.0f.
184 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
185 vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf);
186
187 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
188 __m128 vm = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx)));
189 vf = _mm_or_ps(_mm_and_ps(vf, vm), _mm_andnot_ps(vm, _mm_sub_ps(vone, vf)));
190
191 _mm_storeu_ps(y, vf);
192
193 x += 4;
194 y += 4;
195 }
196 if XNN_UNLIKELY(n != 0) {
197 const __m128 vx = _mm_loadu_ps(x);
198
199 // General structure of the algorithm:
200 // / exp(x) / (1 + exp(x)) if x <= 0
201 // f[x] :=
202 // \ 1 - f[-x] if x >= 0
203 //
204 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
205 // then replace result with 1 - f[z] if x >= 0.
206 const __m128 vz = _mm_or_ps(vx, vsign_mask);
207
208 // Compute reduced argument n := round(z / log(2)).
209 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
210 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
211 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
212 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
213 // the algorithm.
214 __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias);
215
216 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
217 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
218 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
219
220 // Subtract the large number back to get final n := round(z / log(2)).
221 vn = _mm_sub_ps(vn, vmagic_bias);
222
223 // Compute reduced argument t := z - n * log(2).
224 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
225 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz);
226 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
227
228 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
229 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
230 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
231 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
232 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
233
234 // Reconstruct the exp(z) value:
235 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
236 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
237 // = s + (t * s) * p
238 vt = _mm_mul_ps(vt, vs);
239 __m128 ve = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
240
241 // Denominator of the sigmoid fraction: 1.0 + exp(z)
242 __m128 vd = _mm_add_ps(ve, vone);
243
244 // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
245 __m128 vf = _mm_div_ps(ve, vd);
246
247 // For inputs below denormal cutoff, replace output with +0.0f.
248 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
249 vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf);
250
251 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
252 __m128 vm = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx)));
253 vf = _mm_or_ps(_mm_and_ps(vf, vm), _mm_andnot_ps(vm, _mm_sub_ps(vone, vf)));
254
255 if (n & (2 * sizeof(float))) {
256 _mm_storel_pi((__m64*) y, vf);
257 vf = _mm_movehl_ps(vf, vf);
258 y += 2;
259 }
260 if (n & (1 * sizeof(float))) {
261 _mm_store_ss(y, vf);
262 }
263 }
264 }
265