• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/sse-p5-div.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <smmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
xnn_f32_sigmoid_ukernel__sse41_p5_div_x20(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__sse41_p5_div_x20(
19     size_t n,
20     const float* x,
21     float* y,
22     const void* params)
23 {
24   assert(n % sizeof(float) == 0);
25 
26   const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
27   // The smallest x for which sigmoidf(x) is normalized.
28   // This number is also the smallest x for which expf(x) is normalized.
29   const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep+6f);
30   const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33   const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34   const __m128 vone = _mm_set1_ps(1.0f);
35   const __m128 vsign_mask = _mm_set1_ps(-0.0f);
36 
37   const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
38   const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
39   const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
40   const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
41   const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
42 
43   for (; n >= 20 * sizeof(float); n -= 20 * sizeof(float)) {
44     const __m128 vx0123 = _mm_loadu_ps(x);
45     const __m128 vx4567 = _mm_loadu_ps(x + 4);
46     const __m128 vx89AB = _mm_loadu_ps(x + 8);
47     const __m128 vxCDEF = _mm_loadu_ps(x + 12);
48     const __m128 vxGHIJ = _mm_loadu_ps(x + 16);
49 
50     // General structure of the algorithm:
51     //           / exp(x) / (1 + exp(x)) if x <= 0
52     //   f[x] :=
53     //           \ 1 - f[-x] if x >= 0
54     //
55     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
56     // then replace result with 1 - f[z] if x >= 0.
57     const __m128 vz0123 = _mm_or_ps(vx0123, vsign_mask);
58     const __m128 vz4567 = _mm_or_ps(vx4567, vsign_mask);
59     const __m128 vz89AB = _mm_or_ps(vx89AB, vsign_mask);
60     const __m128 vzCDEF = _mm_or_ps(vxCDEF, vsign_mask);
61     const __m128 vzGHIJ = _mm_or_ps(vxGHIJ, vsign_mask);
62 
63     // Compute reduced argument n := round(z / log(2)).
64     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
65     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
66     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
67     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
68     // the algorithm.
69     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vz0123, vlog2e), vmagic_bias);
70     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vz4567, vlog2e), vmagic_bias);
71     __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vz89AB, vlog2e), vmagic_bias);
72     __m128 vnCDEF = _mm_add_ps(_mm_mul_ps(vzCDEF, vlog2e), vmagic_bias);
73     __m128 vnGHIJ = _mm_add_ps(_mm_mul_ps(vzGHIJ, vlog2e), vmagic_bias);
74 
75     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
76     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
77     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
78     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
79     const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
80     const __m128 vsCDEF = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnCDEF), 23));
81     const __m128 vsGHIJ = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnGHIJ), 23));
82 
83     // Subtract the large number back to get final n := round(z / log(2)).
84     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
85     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
86     vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
87     vnCDEF = _mm_sub_ps(vnCDEF, vmagic_bias);
88     vnGHIJ = _mm_sub_ps(vnGHIJ, vmagic_bias);
89 
90     // Compute reduced argument t := z - n * log(2).
91     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
92     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vz0123);
93     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vz4567);
94     __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vz89AB);
95     __m128 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_hi), vzCDEF);
96     __m128 vtGHIJ = _mm_add_ps(_mm_mul_ps(vnGHIJ, vminus_ln2_hi), vzGHIJ);
97 
98     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
99     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
100     vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
101     vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_lo), vtCDEF);
102     vtGHIJ = _mm_add_ps(_mm_mul_ps(vnGHIJ, vminus_ln2_lo), vtGHIJ);
103 
104     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
105     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
106     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
107     __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
108     __m128 vpCDEF = _mm_add_ps(_mm_mul_ps(vc5, vtCDEF), vc4);
109     __m128 vpGHIJ = _mm_add_ps(_mm_mul_ps(vc5, vtGHIJ), vc4);
110 
111     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
112     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
113     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
114     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc3);
115     vpGHIJ = _mm_add_ps(_mm_mul_ps(vpGHIJ, vtGHIJ), vc3);
116 
117     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
118     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
119     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
120     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc2);
121     vpGHIJ = _mm_add_ps(_mm_mul_ps(vpGHIJ, vtGHIJ), vc2);
122 
123     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
124     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
125     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
126     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc1);
127     vpGHIJ = _mm_add_ps(_mm_mul_ps(vpGHIJ, vtGHIJ), vc1);
128 
129     // Reconstruct the exp(z) value:
130     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
131     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
132     //     = s + (t * s) * p
133     vt0123 = _mm_mul_ps(vt0123, vs0123);
134     vt4567 = _mm_mul_ps(vt4567, vs4567);
135     vt89AB = _mm_mul_ps(vt89AB, vs89AB);
136     vtCDEF = _mm_mul_ps(vtCDEF, vsCDEF);
137     vtGHIJ = _mm_mul_ps(vtGHIJ, vsGHIJ);
138 
139     __m128 ve0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
140     __m128 ve4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
141     __m128 ve89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
142     __m128 veCDEF = _mm_add_ps(_mm_mul_ps(vtCDEF, vpCDEF), vsCDEF);
143     __m128 veGHIJ = _mm_add_ps(_mm_mul_ps(vtGHIJ, vpGHIJ), vsGHIJ);
144 
145     // Denominator of the sigmoid fraction: 1.0 + exp(z)
146     __m128 vd0123 = _mm_add_ps(ve0123, vone);
147     __m128 vd4567 = _mm_add_ps(ve4567, vone);
148     __m128 vd89AB = _mm_add_ps(ve89AB, vone);
149     __m128 vdCDEF = _mm_add_ps(veCDEF, vone);
150     __m128 vdGHIJ = _mm_add_ps(veGHIJ, vone);
151 
152     // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
153     __m128 vf0123 = _mm_div_ps(ve0123, vd0123);
154     __m128 vf4567 = _mm_div_ps(ve4567, vd4567);
155     __m128 vf89AB = _mm_div_ps(ve89AB, vd89AB);
156     __m128 vfCDEF = _mm_div_ps(veCDEF, vdCDEF);
157     __m128 vfGHIJ = _mm_div_ps(veGHIJ, vdGHIJ);
158 
159     // For inputs below denormal cutoff, replace output with +0.0f.
160     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
161     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vz0123, vdenorm_cutoff), vf0123);
162     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vz4567, vdenorm_cutoff), vf4567);
163     vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vz89AB, vdenorm_cutoff), vf89AB);
164     vfCDEF = _mm_andnot_ps(_mm_cmplt_ps(vzCDEF, vdenorm_cutoff), vfCDEF);
165     vfGHIJ = _mm_andnot_ps(_mm_cmplt_ps(vzGHIJ, vdenorm_cutoff), vfGHIJ);
166 
167     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
168     vf0123 = _mm_blendv_ps(_mm_sub_ps(vone, vf0123), vf0123, vx0123);
169     vf4567 = _mm_blendv_ps(_mm_sub_ps(vone, vf4567), vf4567, vx4567);
170     vf89AB = _mm_blendv_ps(_mm_sub_ps(vone, vf89AB), vf89AB, vx89AB);
171     vfCDEF = _mm_blendv_ps(_mm_sub_ps(vone, vfCDEF), vfCDEF, vxCDEF);
172     vfGHIJ = _mm_blendv_ps(_mm_sub_ps(vone, vfGHIJ), vfGHIJ, vxGHIJ);
173 
174     _mm_storeu_ps(y, vf0123);
175     _mm_storeu_ps(y + 4, vf4567);
176     _mm_storeu_ps(y + 8, vf89AB);
177     _mm_storeu_ps(y + 12, vfCDEF);
178     _mm_storeu_ps(y + 16, vfGHIJ);
179 
180     x += 20;
181     y += 20;
182   }
183   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
184     const __m128 vx = _mm_loadu_ps(x);
185 
186     // General structure of the algorithm:
187     //           / exp(x) / (1 + exp(x)) if x <= 0
188     //   f[x] :=
189     //           \ 1 - f[-x] if x >= 0
190     //
191     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
192     // then replace result with 1 - f[z] if x >= 0.
193     const __m128 vz = _mm_or_ps(vx, vsign_mask);
194 
195     // Compute reduced argument n := round(z / log(2)).
196     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
197     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
198     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
199     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
200     // the algorithm.
201     __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias);
202 
203     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
204     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
205     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
206 
207     // Subtract the large number back to get final n := round(z / log(2)).
208     vn = _mm_sub_ps(vn, vmagic_bias);
209 
210     // Compute reduced argument t := z - n * log(2).
211     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
212     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz);
213     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
214 
215     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
216     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
217     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
218     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
219     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
220 
221     // Reconstruct the exp(z) value:
222     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
223     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
224     //     = s + (t * s) * p
225     vt = _mm_mul_ps(vt, vs);
226     __m128 ve = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
227 
228     // Denominator of the sigmoid fraction: 1.0 + exp(z)
229     __m128 vd = _mm_add_ps(ve, vone);
230 
231     // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
232     __m128 vf = _mm_div_ps(ve, vd);
233 
234     // For inputs below denormal cutoff, replace output with +0.0f.
235     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
236     vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf);
237 
238     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
239     vf = _mm_blendv_ps(_mm_sub_ps(vone, vf), vf, vx);
240 
241     _mm_storeu_ps(y, vf);
242 
243     x += 4;
244     y += 4;
245   }
246   if XNN_UNLIKELY(n != 0) {
247     const __m128 vx = _mm_loadu_ps(x);
248 
249     // General structure of the algorithm:
250     //           / exp(x) / (1 + exp(x)) if x <= 0
251     //   f[x] :=
252     //           \ 1 - f[-x] if x >= 0
253     //
254     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
255     // then replace result with 1 - f[z] if x >= 0.
256     const __m128 vz = _mm_or_ps(vx, vsign_mask);
257 
258     // Compute reduced argument n := round(z / log(2)).
259     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
260     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
261     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
262     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
263     // the algorithm.
264     __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias);
265 
266     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
267     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
268     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
269 
270     // Subtract the large number back to get final n := round(z / log(2)).
271     vn = _mm_sub_ps(vn, vmagic_bias);
272 
273     // Compute reduced argument t := z - n * log(2).
274     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
275     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz);
276     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
277 
278     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
279     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
280     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
281     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
282     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
283 
284     // Reconstruct the exp(z) value:
285     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
286     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
287     //     = s + (t * s) * p
288     vt = _mm_mul_ps(vt, vs);
289     __m128 ve = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
290 
291     // Denominator of the sigmoid fraction: 1.0 + exp(z)
292     __m128 vd = _mm_add_ps(ve, vone);
293 
294     // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
295     __m128 vf = _mm_div_ps(ve, vd);
296 
297     // For inputs below denormal cutoff, replace output with +0.0f.
298     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
299     vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf);
300 
301     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
302     vf = _mm_blendv_ps(_mm_sub_ps(vone, vf), vf, vx);
303 
304     if (n & (2 * sizeof(float))) {
305       _mm_storel_pi((__m64*) y, vf);
306       vf = _mm_movehl_ps(vf, vf);
307       y += 2;
308     }
309     if (n & (1 * sizeof(float))) {
310       _mm_store_ss(y, vf);
311     }
312   }
313 }
314