• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/intrinsics-polyfill.h>
16 #include <xnnpack/vscaleextexp.h>
17 
18 
xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x144(size_t elements,const float * x,float * y,float scale_value,float scale_exp)19 void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x144(
20     size_t elements,
21     const float* x,
22     float* y,
23     float scale_value,
24     float scale_exp)
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
29   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
30   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
31 
32   const __m512 vc0 = _mm512_set1_ps(1.0f);
33   const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
34   const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
35   const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
36   const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
37   const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
38 
39   const __m512 vscalev = _mm512_set1_ps(scale_value);
40   const __m512 vscalee = _mm512_set1_ps(scale_exp);
41 
42   for (; elements >= 144 * sizeof(float); elements -= 144 * sizeof(float)) {
43     // Load 144 (9x16) inputs at a time.
44     const __m512 vx0 = _mm512_loadu_ps(x);
45     const __m512 vx1 = _mm512_loadu_ps(x + 16);
46     const __m512 vx2 = _mm512_loadu_ps(x + 32);
47     const __m512 vx3 = _mm512_loadu_ps(x + 48);
48     const __m512 vx4 = _mm512_loadu_ps(x + 64);
49     const __m512 vx5 = _mm512_loadu_ps(x + 80);
50     const __m512 vx6 = _mm512_loadu_ps(x + 96);
51     const __m512 vx7 = _mm512_loadu_ps(x + 112);
52     const __m512 vx8 = _mm512_loadu_ps(x + 128);
53     x += 144;
54 
55     // Compute reduced argument elements := round(x / log(2)).
56     const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
57     const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
58     const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
59     const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
60     const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
61     const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
62     const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
63     const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
64     const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0);
65 
66     // Compute reduced argument t := x - elements * log(2).
67     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
68     __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
69     __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
70     __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
71     __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
72     __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
73     __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
74     __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
75     __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
76     __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8);
77 
78     vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
79     vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
80     vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
81     vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
82     vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
83     vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
84     vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
85     vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
86     vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8);
87 
88     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
89     __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
90     __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
91     __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
92     __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
93     __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
94     __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
95     __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
96     __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
97     __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4);
98 
99     vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
100     vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
101     vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
102     vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
103     vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
104     vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
105     vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
106     vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
107     vp8 = _mm512_fmadd_ps(vp8, vt8, vc3);
108 
109     vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
110     vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
111     vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
112     vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
113     vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
114     vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
115     vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
116     vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
117     vp8 = _mm512_fmadd_ps(vp8, vt8, vc2);
118 
119     vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
120     vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
121     vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
122     vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
123     vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
124     vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
125     vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
126     vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
127     vp8 = _mm512_fmadd_ps(vp8, vt8, vc1);
128 
129     vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
130     vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
131     vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
132     vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
133     vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
134     vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
135     vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
136     vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
137     vp8 = _mm512_fmadd_ps(vp8, vt8, vc0);
138 
139     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where
140     //  - vnX is "exponent"
141     //  - vpX is "mantissa"
142     //
143     // exp2(ae) * av * exp2(be) * bv =
144     //   = exp2(ae + be) * (av * bv)
145     __m512 vf0 = _mm512_mul_ps(vp0, vscalev);
146     __m512 vf1 = _mm512_mul_ps(vp1, vscalev);
147     __m512 vf2 = _mm512_mul_ps(vp2, vscalev);
148     __m512 vf3 = _mm512_mul_ps(vp3, vscalev);
149     __m512 vf4 = _mm512_mul_ps(vp4, vscalev);
150     __m512 vf5 = _mm512_mul_ps(vp5, vscalev);
151     __m512 vf6 = _mm512_mul_ps(vp6, vscalev);
152     __m512 vf7 = _mm512_mul_ps(vp7, vscalev);
153     __m512 vf8 = _mm512_mul_ps(vp8, vscalev);
154 
155     const __m512 ve0 = _mm512_add_ps(vn0, vscalee);
156     const __m512 ve1 = _mm512_add_ps(vn1, vscalee);
157     const __m512 ve2 = _mm512_add_ps(vn2, vscalee);
158     const __m512 ve3 = _mm512_add_ps(vn3, vscalee);
159     const __m512 ve4 = _mm512_add_ps(vn4, vscalee);
160     const __m512 ve5 = _mm512_add_ps(vn5, vscalee);
161     const __m512 ve6 = _mm512_add_ps(vn6, vscalee);
162     const __m512 ve7 = _mm512_add_ps(vn7, vscalee);
163     const __m512 ve8 = _mm512_add_ps(vn8, vscalee);
164 
165     // Multiply "mantissa" by the exp2("exponent").
166     vf0 = _mm512_scalef_ps(vf0, ve0);
167     vf1 = _mm512_scalef_ps(vf1, ve1);
168     vf2 = _mm512_scalef_ps(vf2, ve2);
169     vf3 = _mm512_scalef_ps(vf3, ve3);
170     vf4 = _mm512_scalef_ps(vf4, ve4);
171     vf5 = _mm512_scalef_ps(vf5, ve5);
172     vf6 = _mm512_scalef_ps(vf6, ve6);
173     vf7 = _mm512_scalef_ps(vf7, ve7);
174     vf8 = _mm512_scalef_ps(vf8, ve8);
175 
176     // Store 128 (8x16) results at a time.
177     _mm512_storeu_ps(y, vf0);
178     _mm512_storeu_ps(y + 0, vf0);
179     _mm512_storeu_ps(y + 16, vf1);
180     _mm512_storeu_ps(y + 32, vf2);
181     _mm512_storeu_ps(y + 48, vf3);
182     _mm512_storeu_ps(y + 64, vf4);
183     _mm512_storeu_ps(y + 80, vf5);
184     _mm512_storeu_ps(y + 96, vf6);
185     _mm512_storeu_ps(y + 112, vf7);
186     _mm512_storeu_ps(y + 128, vf8);
187     y += 144;
188   }
189 
190   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
191     // Load 16 inputs at a time.
192     const __m512 vx = _mm512_loadu_ps(x);
193     x += 16;
194 
195     // Compute reduced argument elements := round(x / log(2)).
196     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
197 
198     // Compute reduced argument t := x - elements * log(2).
199     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
200     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
201     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
202 
203     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
204     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
205     vp = _mm512_fmadd_ps(vp, vt, vc3);
206     vp = _mm512_fmadd_ps(vp, vt, vc2);
207     vp = _mm512_fmadd_ps(vp, vt, vc1);
208     vp = _mm512_fmadd_ps(vp, vt, vc0);
209 
210     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
211     __m512 vf = _mm512_mul_ps(vp, vscalev);
212     const __m512 ve = _mm512_add_ps(vn, vscalee);
213 
214     // Multiply "mantissa" by the exp2("exponent").
215     vf = _mm512_scalef_ps(vf, ve);
216 
217     // Store 16 results at a time.
218     _mm512_storeu_ps(y, vf);
219     y += 16;
220   }
221   if XNN_UNLIKELY(elements != 0) {
222     // Prepare mask for valid 32-bit elements (depends on elements).
223     elements >>= 2 /* log2(sizeof(float)) */;
224     const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
225 
226     // Load up to 15 inputs at a time.
227     const __m512 vx = _mm512_maskz_loadu_ps(vmask, x);
228 
229     // Compute reduced argument elements := round(x / log(2)).
230     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
231 
232     // Compute reduced argument t := x - elements * log(2).
233     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
234     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
235     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
236 
237     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
238     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
239     vp = _mm512_fmadd_ps(vp, vt, vc3);
240     vp = _mm512_fmadd_ps(vp, vt, vc2);
241     vp = _mm512_fmadd_ps(vp, vt, vc1);
242     vp = _mm512_fmadd_ps(vp, vt, vc0);
243 
244     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
245     __m512 vf = _mm512_mul_ps(vp, vscalev);
246     const __m512 ve = _mm512_add_ps(vn, vscalee);
247 
248     // Multiply "mantissa" by the exp2("exponent").
249     vf = _mm512_scalef_ps(vf, ve);
250 
251     // Store up to 15 results at a time.
252     _mm512_mask_storeu_ps(y, vmask, vf);
253   }
254   _mm256_zeroupper();
255 }
256