• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/intrinsics-polyfill.h>
16 #include <xnnpack/vscaleextexp.h>
17 
18 
xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x64(size_t elements,const float * x,float * y,float scale_value,float scale_exp)19 void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x64(
20     size_t elements,
21     const float* x,
22     float* y,
23     float scale_value,
24     float scale_exp)
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
29   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
30   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
31 
32   const __m512 vc0 = _mm512_set1_ps(1.0f);
33   const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
34   const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
35   const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
36   const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
37   const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
38 
39   const __m512 vscalev = _mm512_set1_ps(scale_value);
40   const __m512 vscalee = _mm512_set1_ps(scale_exp);
41 
42   for (; elements >= 64 * sizeof(float); elements -= 64 * sizeof(float)) {
43     // Load 64 (4x16) inputs at a time.
44     const __m512 vx0 = _mm512_loadu_ps(x);
45     const __m512 vx1 = _mm512_loadu_ps(x + 16);
46     const __m512 vx2 = _mm512_loadu_ps(x + 32);
47     const __m512 vx3 = _mm512_loadu_ps(x + 48);
48     x += 64;
49 
50     // Compute reduced argument elements := round(x / log(2)).
51     const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
52     const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
53     const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
54     const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
55 
56     // Compute reduced argument t := x - elements * log(2).
57     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
58     __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
59     __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
60     __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
61     __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
62 
63     vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
64     vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
65     vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
66     vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
67 
68     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
69     __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
70     __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
71     __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
72     __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
73 
74     vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
75     vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
76     vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
77     vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
78 
79     vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
80     vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
81     vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
82     vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
83 
84     vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
85     vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
86     vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
87     vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
88 
89     vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
90     vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
91     vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
92     vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
93 
94     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where
95     //  - vnX is "exponent"
96     //  - vpX is "mantissa"
97     //
98     // exp2(ae) * av * exp2(be) * bv =
99     //   = exp2(ae + be) * (av * bv)
100     __m512 vf0 = _mm512_mul_ps(vp0, vscalev);
101     __m512 vf1 = _mm512_mul_ps(vp1, vscalev);
102     __m512 vf2 = _mm512_mul_ps(vp2, vscalev);
103     __m512 vf3 = _mm512_mul_ps(vp3, vscalev);
104 
105     const __m512 ve0 = _mm512_add_ps(vn0, vscalee);
106     const __m512 ve1 = _mm512_add_ps(vn1, vscalee);
107     const __m512 ve2 = _mm512_add_ps(vn2, vscalee);
108     const __m512 ve3 = _mm512_add_ps(vn3, vscalee);
109 
110     // Multiply "mantissa" by the exp2("exponent").
111     vf0 = _mm512_scalef_ps(vf0, ve0);
112     vf1 = _mm512_scalef_ps(vf1, ve1);
113     vf2 = _mm512_scalef_ps(vf2, ve2);
114     vf3 = _mm512_scalef_ps(vf3, ve3);
115 
116     // Store 128 (8x16) results at a time.
117     _mm512_storeu_ps(y, vf0);
118     _mm512_storeu_ps(y + 0, vf0);
119     _mm512_storeu_ps(y + 16, vf1);
120     _mm512_storeu_ps(y + 32, vf2);
121     _mm512_storeu_ps(y + 48, vf3);
122     y += 64;
123   }
124 
125   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
126     // Load 16 inputs at a time.
127     const __m512 vx = _mm512_loadu_ps(x);
128     x += 16;
129 
130     // Compute reduced argument elements := round(x / log(2)).
131     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
132 
133     // Compute reduced argument t := x - elements * log(2).
134     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
135     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
136     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
137 
138     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
139     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
140     vp = _mm512_fmadd_ps(vp, vt, vc3);
141     vp = _mm512_fmadd_ps(vp, vt, vc2);
142     vp = _mm512_fmadd_ps(vp, vt, vc1);
143     vp = _mm512_fmadd_ps(vp, vt, vc0);
144 
145     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
146     __m512 vf = _mm512_mul_ps(vp, vscalev);
147     const __m512 ve = _mm512_add_ps(vn, vscalee);
148 
149     // Multiply "mantissa" by the exp2("exponent").
150     vf = _mm512_scalef_ps(vf, ve);
151 
152     // Store 16 results at a time.
153     _mm512_storeu_ps(y, vf);
154     y += 16;
155   }
156   if XNN_UNLIKELY(elements != 0) {
157     // Prepare mask for valid 32-bit elements (depends on elements).
158     elements >>= 2 /* log2(sizeof(float)) */;
159     const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
160 
161     // Load up to 15 inputs at a time.
162     const __m512 vx = _mm512_maskz_loadu_ps(vmask, x);
163 
164     // Compute reduced argument elements := round(x / log(2)).
165     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
166 
167     // Compute reduced argument t := x - elements * log(2).
168     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
169     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
170     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
171 
172     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
173     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
174     vp = _mm512_fmadd_ps(vp, vt, vc3);
175     vp = _mm512_fmadd_ps(vp, vt, vc2);
176     vp = _mm512_fmadd_ps(vp, vt, vc1);
177     vp = _mm512_fmadd_ps(vp, vt, vc0);
178 
179     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
180     __m512 vf = _mm512_mul_ps(vp, vscalev);
181     const __m512 ve = _mm512_add_ps(vn, vscalee);
182 
183     // Multiply "mantissa" by the exp2("exponent").
184     vf = _mm512_scalef_ps(vf, ve);
185 
186     // Store up to 15 results at a time.
187     _mm512_mask_storeu_ps(y, vmask, vf);
188   }
189   _mm256_zeroupper();
190 }
191