• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 
9 #include <arm_neon.h>
10 
11 #include <xnnpack/math-stubs.h>
12 
13 
14 // Table of exp2(k / 64) values, k = 0..63
15 static const float exp2_k_over_64_table[64] = {
16   0x1.000000p+0f, 0x1.02C9A4p+0f, 0x1.059B0Ep+0f, 0x1.087452p+0f,
17   0x1.0B5586p+0f, 0x1.0E3EC4p+0f, 0x1.11301Ep+0f, 0x1.1429AAp+0f,
18   0x1.172B84p+0f, 0x1.1A35BEp+0f, 0x1.1D4874p+0f, 0x1.2063B8p+0f,
19   0x1.2387A6p+0f, 0x1.26B456p+0f, 0x1.29E9E0p+0f, 0x1.2D285Ap+0f,
20   0x1.306FE0p+0f, 0x1.33C08Cp+0f, 0x1.371A74p+0f, 0x1.3A7DB4p+0f,
21   0x1.3DEA64p+0f, 0x1.4160A2p+0f, 0x1.44E086p+0f, 0x1.486A2Cp+0f,
22   0x1.4BFDAEp+0f, 0x1.4F9B28p+0f, 0x1.5342B6p+0f, 0x1.56F474p+0f,
23   0x1.5AB07Ep+0f, 0x1.5E76F2p+0f, 0x1.6247ECp+0f, 0x1.662388p+0f,
24   0x1.6A09E6p+0f, 0x1.6DFB24p+0f, 0x1.71F75Ep+0f, 0x1.75FEB6p+0f,
25   0x1.7A1148p+0f, 0x1.7E2F34p+0f, 0x1.82589Ap+0f, 0x1.868D9Ap+0f,
26   0x1.8ACE54p+0f, 0x1.8F1AEAp+0f, 0x1.93737Cp+0f, 0x1.97D82Ap+0f,
27   0x1.9C4918p+0f, 0x1.A0C668p+0f, 0x1.A5503Cp+0f, 0x1.A9E6B6p+0f,
28   0x1.AE89FAp+0f, 0x1.B33A2Cp+0f, 0x1.B7F770p+0f, 0x1.BCC1EAp+0f,
29   0x1.C199BEp+0f, 0x1.C67F12p+0f, 0x1.CB720Ep+0f, 0x1.D072D4p+0f,
30   0x1.D5818Ep+0f, 0x1.DA9E60p+0f, 0x1.DFC974p+0f, 0x1.E502EEp+0f,
31   0x1.EA4AFAp+0f, 0x1.EFA1BEp+0f, 0x1.F50766p+0f, 0x1.FA7C18p+0f,
32 };
33 
xnn_math_f32_expminus__neonfma_lut64_p2(size_t n,const float * input,float * output)34 void xnn_math_f32_expminus__neonfma_lut64_p2(
35     size_t n,
36     const float* input,
37     float* output)
38 {
39   assert(n % (4 * sizeof(float)) == 0);
40 
41   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
42   // The smallest x for which expf(x) is normalized.
43   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
44   const float32x4_t vlog2e_x64  = vmovq_n_f32(0x1.715476p6f);
45   const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.62e43p-7f);
46   const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.05c61p-35f);
47 
48   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
49 
50   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
51 
52   for (; n != 0; n -= 4 * sizeof(float)) {
53     const float32x4_t vx = vld1q_f32(input); input += 4;
54 
55     // Compute reduced argument n := round(x * 64 / log(2)).
56     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
57     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
58     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
59     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
60     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
61     // algorithm.
62     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e_x64);
63 
64     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
65     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
66     // e := int(n / 64). We create s in two steps:
67     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from exp2_k_over_64_table using the 6 low bits of n, as integer. Note that the
68     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
69     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
70     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
71     //    and thus the adjusted exponent is not lower than -126.
72     //
73     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
74     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
75 
76     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
77     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
78     const uint64_t vidx01 = vgetq_lane_u64(vidx, 0);
79     const uint64_t vidx23 = vgetq_lane_u64(vidx, 1);
80     float32x2_t vl01 = vld1_dup_f32(&exp2_k_over_64_table[(uint32_t) vidx01]);
81     float32x2_t vl23 = vld1_dup_f32(&exp2_k_over_64_table[(uint32_t) vidx23]);
82     vl01 = vld1_lane_f32(&exp2_k_over_64_table[(uint32_t) (vidx01 >> 32)], vl01, 1);
83     vl23 = vld1_lane_f32(&exp2_k_over_64_table[(uint32_t) (vidx23 >> 32)], vl23, 1);
84     const float32x4_t vl = vcombine_f32(vl01, vl23);
85     // Adjust exponent of the value l fetched from the exp2_k_over_64_table to get the final s value.
86     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
87 
88     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
89     vn = vsubq_f32(vn, vmagic_bias);
90 
91     // Compute reduced argument t := x - n * log(2) / 64.
92     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
93     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_o64_hi);
94     vt = vfmaq_f32(vt, vn, vminus_ln2_o64_lo);
95 
96     // Compute degree-2 polynomial approxiatmion for exp(t) on [-log(2)/128, log(2)/128].
97     float32x4_t vp = vmulq_f32(vt, vc2);
98     vp = vfmaq_f32(vt, vt, vp);
99 
100     // Reconstruct the final f value:
101     //   f = s * (1 + t * (1 + t * c2))
102     //     = s * (1 + t + t * (t * c2))
103     //     = s + s * (t + t * (t * c2))
104     //     = s + s * p
105     float32x4_t vf = vfmaq_f32(vs, vs, vp);
106 
107     // For inputs below denormal cutoff, replace output with +0.0f.
108     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
109     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
110     vst1q_f32(output, vf); output += 4;
111   }
112 }
113