1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <assert.h>
7 #include <stddef.h>
8
9 #include <arm_neon.h>
10
11 #include <xnnpack/common.h>
12 #include <xnnpack/math-stubs.h>
13
14
15 // Table of exp2(k / 2048) values, k = 0..2047
16 extern XNN_INTERNAL const float xnn_table_exp2_k_over_2048[2048];
17
xnn_math_f32_sigmoid__neonfma_rr2_lut2048_p1_div(size_t n,const float * input,float * output)18 void xnn_math_f32_sigmoid__neonfma_rr2_lut2048_p1_div(
19 size_t n,
20 const float* input,
21 float* output)
22 {
23 assert(n % (4 * sizeof(float)) == 0);
24
25 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
26 // The largest z for which sigmoidf(-z) is normalized.
27 // This number is also the largest z for which expf(-z) is normalized.
28 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep+6f);
29 const float32x4_t vminus_log2e_x2048 = vmovq_n_f32(-0x1.715476p11f);
30 const float32x4_t vln2_o2048_hi = vmovq_n_f32(0x1.62E43p-12f);
31 const float32x4_t vln2_o2048_lo = vmovq_n_f32(-0x1.05C61p-40f);
32 const float32x4_t vone = vmovq_n_f32(1.0f);
33
34 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
35
36 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
37
38 for (; n != 0; n -= 4 * sizeof(float)) {
39 const float32x4_t vx = vld1q_f32(input); input += 4;
40
41 // General structure of the algorithm:
42 // / exp(x) / (1 + exp(x)) if x <= 0
43 // f[x] :=
44 // \ 1 - f[-x] if x >= 0
45 //
46 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
47 // then replace result with 1 - f[-z] if x >= 0.
48 const float32x4_t vz = vabsq_f32(vx);
49
50 // Compute reduced argument n := round(-z * 2048 / log(2)).
51 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
52 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
53 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
54 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
55 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
56 // for such inputs at the very end of the algorithm.
57 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
58
59 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
60 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
61 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
62 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from the table using the 11 low bits of n, as integer. Note that the
63 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
64 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
65 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
66 // and thus the adjusted exponent is not lower than -126.
67 //
68 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
69 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
70
71 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
72 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
73 const uint64_t vidx01 = vgetq_lane_u64(vidx, 0);
74 const uint64_t vidx23 = vgetq_lane_u64(vidx, 1);
75 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx01]);
76 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx23]);
77 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1);
78 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1);
79 const float32x4_t vl = vcombine_f32(vl01, vl23);
80 // Adjust exponent of the value l fetched from the table to get the final s value.
81 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
82
83 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
84 vn = vsubq_f32(vn, vmagic_bias);
85
86 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
87 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
88 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o2048_hi);
89 vt = vfmaq_f32(vt, vn, vln2_o2048_lo);
90
91 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/4096, log(2)/4096]:
92 // P1(t) = 1 + t * c1
93 const float32x4_t vp = vmulq_f32(vt, vc1);
94
95 // Reconstruct the exp(-z) value:
96 // y = s * (1 + t * c1)
97 // = s + s * (t * c1))
98 // = s + s * p
99 const float32x4_t vy = vfmaq_f32(vs, vs, vp);
100
101 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
102 const float32x4_t vd = vaddq_f32(vy, vone);
103
104 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
105 float32x4_t vf = vdivq_f32(vy, vd);
106
107 // For inputs below denormal cutoff, replace output with +0.0f.
108 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
109 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
110
111 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
112 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
113 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
114
115 vst1q_f32(output, vf); output += 4;
116 }
117 }
118