1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <assert.h>
7 #include <stddef.h>
8
9 #include <arm_neon.h>
10
11 #include <xnnpack/math-stubs.h>
12
13
xnn_math_f32_sigmoid__neonfma_rr2_p5_nr2fma(size_t n,const float * input,float * output)14 void xnn_math_f32_sigmoid__neonfma_rr2_p5_nr2fma(
15 size_t n,
16 const float* input,
17 float* output)
18 {
19 assert(n % (4 * sizeof(float)) == 0);
20
21 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
22 // The largest z for which sigmoidf(-z) is normalized.
23 // This number is also the largest z for which expf(-z) is normalized.
24 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep+6f);
25 const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
26 const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E43p-1f);
27 const float32x4_t vln2_lo = vmovq_n_f32(-0x1.05C61p-29f);
28 const float32x4_t vone = vmovq_n_f32(1.0f);
29
30 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
31 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
32 const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
33 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
34 const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
35
36 for (; n != 0; n -= 4 * sizeof(float)) {
37 const float32x4_t vx = vld1q_f32(input); input += 4;
38
39 // General structure of the algorithm:
40 // / exp(x) / (1 + exp(x)) if x <= 0
41 // f[x] :=
42 // \ 1 - f[-x] if x >= 0
43 //
44 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
45 // then replace result with 1 - f[-z] if x >= 0.
46 const float32x4_t vz = vabsq_f32(vx);
47
48 // Compute reduced argument n := round(-z / log(2)).
49 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
50 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
51 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
52 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
53 // anyway. We fixup the result for such inputs at the very end of the algorithm.
54 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
55
56 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
57 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
58 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
59
60 // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
61 vn = vsubq_f32(vn, vmagic_bias);
62
63 // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
64 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
65 float32x4_t vt = vfmaq_f32(vz, vn, vln2_hi);
66 vt = vfmaq_f32(vt, vn, vln2_lo);
67
68 // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
69 // P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
70 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
71 vp = vfmaq_f32(vc3, vp, vt);
72 vp = vfmaq_f32(vc2, vp, vt);
73 vp = vfmaq_f32(vc1, vp, vt);
74
75 // Reconstruct the exp(-z) value:
76 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
77 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
78 // = s + (t * s) * p
79 vt = vmulq_f32(vt, vs);
80 float32x4_t ve = vfmaq_f32(vs, vp, vt);
81
82 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
83 float32x4_t vd = vaddq_f32(ve, vone);
84
85 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
86 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
87 // Thus the reciprocal of the denominator never overflows.
88 float32x4_t vr = vrecpeq_f32(vd);
89 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
90 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
91
92 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
93 float32x4_t vf = vmulq_f32(ve, vr);
94
95 // For inputs below denormal cutoff, replace output with +0.0f.
96 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
97 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
98
99 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
100 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
101 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
102
103 vst1q_f32(output, vf); output += 4;
104 }
105 }
106