1 // Copyright (c) Facebook, Inc. and its affiliates.
2 // All rights reserved.
3 //
4 // Copyright 2019 Google LLC
5 //
6 // This source code is licensed under the BSD-style license found in the
7 // LICENSE file in the root directory of this source tree.
8
9 #include <assert.h>
10 #include <stdint.h>
11
12 #include <fp16/bitcasts.h>
13
14 #include <xnnpack/scalar-utils.h>
15 #include <xnnpack/requantization-stubs.h>
16
17
xnn_requantize_precise__scalar_unsigned32(size_t n,const int32_t * input,float scale,uint8_t zero_point,uint8_t qmin,uint8_t qmax,uint8_t * output)18 void xnn_requantize_precise__scalar_unsigned32(
19 size_t n,
20 const int32_t* input,
21 float scale,
22 uint8_t zero_point,
23 uint8_t qmin,
24 uint8_t qmax,
25 uint8_t* output)
26 {
27 assert(n % 4 == 0);
28 assert(scale < 1.0f);
29 assert(scale >= 0x1.0p-32f);
30
31 const uint32_t scale_bits = fp32_to_bits(scale);
32 const uint32_t multiplier = (scale_bits << 8) | UINT32_C(0x80000000);
33 const uint32_t shift = 127 + 31 - (scale_bits >> 23);
34 assert(shift >= 32);
35 assert(shift < 64);
36
37 const uint64_t rounding = UINT64_C(1) << (shift - 1);
38 const uint32_t rounding_hi = (uint32_t)(rounding >> 32);
39 const uint32_t rounding_lo = (uint32_t) rounding;
40 const uint32_t shift_minus_32 = shift - 32;
41 const int32_t smin = (int32_t)(uint32_t) qmin - (int32_t)(uint32_t) zero_point;
42 const int32_t smax = (int32_t)(uint32_t) qmax - (int32_t)(uint32_t) zero_point;
43 for (; n != 0; n -= 4) {
44 const int32_t x = input[0];
45 const int32_t y = input[1];
46 const int32_t z = input[2];
47 const int32_t w = input[3];
48 input += 4;
49
50 // Compute absolute value of input as unsigned 32-bit int.
51 // All further computations will work with unsigned values to avoid undefined behaviour on signed operations.
52 const uint32_t x_abs = (x >= 0) ? (uint32_t) x : -(uint32_t) x;
53 const uint32_t y_abs = (y >= 0) ? (uint32_t) y : -(uint32_t) y;
54 const uint32_t z_abs = (z >= 0) ? (uint32_t) z : -(uint32_t) z;
55 const uint32_t w_abs = (w >= 0) ? (uint32_t) w : -(uint32_t) w;
56
57 // Compute full 64-bit product of 32-bit factors.
58 const uint64_t x_product = (uint64_t) x_abs * (uint64_t) multiplier;
59 const uint64_t y_product = (uint64_t) y_abs * (uint64_t) multiplier;
60 const uint64_t z_product = (uint64_t) z_abs * (uint64_t) multiplier;
61 const uint64_t w_product = (uint64_t) w_abs * (uint64_t) multiplier;
62
63 // Shift the full 64-bit product right with rounding.
64 // Rounding is performed towards closest integer, with midpoints rounded up (same as away from zero).
65 //
66 // Generally, this operation requires both 64-bit addition and 64-bit shift, but we use two tricks to replace
67 // 64-bit operations with 32-bit operations.
68 //
69 // To avoid full 64-bit addition we make use of three facts:
70 // - 64-bit rounding value added before the shift is a power of 2, and thus has only one bit set.
71 // - When 0x1.0p-32f <= scale < 0x1.0p-31f, then the non-zero bit in rounding is in the low 32 bits, and
72 // rounding is exactly 0x80000000 (2**31), because rounding is 2**(scale-1) and scale >= 32. In this case,
73 // addition of rounding can affect high 32 bits of the product only through overflow, which happens if
74 // low 32-bit part of the product equals or exceeds 0x80000000. We can reformulate the latter condition
75 // as low 32-bit part of the product has the bit 31 set, and then overflow happens if both the low 32-bit part
76 // of the product and the low 32-bit part of the rounding value have bit 31 set. Since 32-bit numbers with the
77 // bit 31 set are negative when interpreted as signed integers, we can check the overflow condition as
78 // (int32_t) (LOW(product) & LOW(rounding)) < 0
79 // - When 0x1.0p-31f <= scale < 1.0f, then the non-zero bit is in the high 32 bits of rounding. We just need
80 // to do 32-bit addition of high 32 bits of rounding and high 32 bits of product. This addition never
81 // overflows because product <= 0x80000000 * 0xFFFFFF00 < 2**63 and rounding = 2**(scale-1) <= 2**62.
82 //
83 // To avoid full 64-bit shift, we leverage the fact that shift >= 32, and do it in two steps:
84 // - Shift by 32, which can be implemented by extacting the high 32-bit word on 32-bit systems.
85 // - Shift by (shift - 32), which can be implemented as a 32-bit shift of high word of addition result.
86 const uint32_t x_carry_lo = (uint32_t)((int32_t)((uint32_t) x_product & rounding_lo) < 0);
87 const uint32_t y_carry_lo = (uint32_t)((int32_t)((uint32_t) y_product & rounding_lo) < 0);
88 const uint32_t z_carry_lo = (uint32_t)((int32_t)((uint32_t) z_product & rounding_lo) < 0);
89 const uint32_t w_carry_lo = (uint32_t)((int32_t)((uint32_t) w_product & rounding_lo) < 0);
90
91 const uint32_t x_product_hi = (uint32_t)(x_product >> 32);
92 const uint32_t y_product_hi = (uint32_t)(y_product >> 32);
93 const uint32_t z_product_hi = (uint32_t)(z_product >> 32);
94 const uint32_t w_product_hi = (uint32_t)(w_product >> 32);
95
96 const uint32_t x_abs_scaled = (uint32_t)(x_product_hi + rounding_hi + x_carry_lo) >> shift_minus_32;
97 const uint32_t y_abs_scaled = (uint32_t)(y_product_hi + rounding_hi + y_carry_lo) >> shift_minus_32;
98 const uint32_t z_abs_scaled = (uint32_t)(z_product_hi + rounding_hi + z_carry_lo) >> shift_minus_32;
99 const uint32_t w_abs_scaled = (uint32_t)(w_product_hi + rounding_hi + w_carry_lo) >> shift_minus_32;
100
101 // Copy the sign of input to scaled absolute input value.
102 const int32_t x_scaled = (int32_t)(x >= 0 ? x_abs_scaled : -x_abs_scaled);
103 const int32_t y_scaled = (int32_t)(y >= 0 ? y_abs_scaled : -y_abs_scaled);
104 const int32_t z_scaled = (int32_t)(z >= 0 ? z_abs_scaled : -z_abs_scaled);
105 const int32_t w_scaled = (int32_t)(w >= 0 ? w_abs_scaled : -w_abs_scaled);
106
107 // Clamp scaled value with zero point between (qmin - zero point) and (qmax - zero point).
108 const int32_t x_clamped = x_scaled < smin ? smin : x_scaled > smax ? smax : x_scaled;
109 const int32_t y_clamped = y_scaled < smin ? smin : y_scaled > smax ? smax : y_scaled;
110 const int32_t z_clamped = z_scaled < smin ? smin : z_scaled > smax ? smax : z_scaled;
111 const int32_t w_clamped = w_scaled < smin ? smin : w_scaled > smax ? smax : w_scaled;
112
113 // Add zero point to clamped value.
114 // The result is guaranteed to be in [qmin, qmax] range.
115 //
116 // This addition can not be safely done before clamping, because scaled values are in [-2147483520, 2147483519]
117 // range, so addition of zero point (which can be up to 255) can overflow signed 32-bit integer.
118 const int32_t x_biased = x_clamped + zero_point;
119 const int32_t y_biased = y_clamped + zero_point;
120 const int32_t z_biased = z_clamped + zero_point;
121 const int32_t w_biased = w_clamped + zero_point;
122
123 output[0] = (uint8_t) x_biased;
124 output[1] = (uint8_t) y_biased;
125 output[2] = (uint8_t) z_biased;
126 output[3] = (uint8_t) w_biased;
127 output += 4;
128 }
129 }
130
xnn_requantize_precise__scalar_unsigned64(size_t n,const int32_t * input,float scale,uint8_t zero_point,uint8_t qmin,uint8_t qmax,uint8_t * output)131 void xnn_requantize_precise__scalar_unsigned64(
132 size_t n,
133 const int32_t* input,
134 float scale,
135 uint8_t zero_point,
136 uint8_t qmin,
137 uint8_t qmax,
138 uint8_t* output)
139 {
140 assert(n % 4 == 0);
141 assert(scale < 1.0f);
142 assert(scale >= 0x1.0p-32f);
143
144 const uint32_t scale_bits = fp32_to_bits(scale);
145 const uint32_t multiplier = (scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000);
146 const uint32_t shift = 127 + 23 - (scale_bits >> 23);
147 assert(shift >= 24);
148 assert(shift < 56);
149
150 const uint64_t rounding = UINT64_C(1) << (shift - 1);
151 const int32_t smin = (int32_t)(uint32_t) qmin - (int32_t)(uint32_t) zero_point;
152 const int32_t smax = (int32_t)(uint32_t) qmax - (int32_t)(uint32_t) zero_point;
153 for (; n != 0; n -= 4) {
154 const int32_t x = input[0];
155 const int32_t y = input[1];
156 const int32_t z = input[2];
157 const int32_t w = input[3];
158 input += 4;
159
160 // Compute absolute value of input as unsigned 32-bit int.
161 // All further computations will work with unsigned values to avoid undefined behaviour on signed operations.
162 const uint32_t x_abs = (x >= 0) ? (uint32_t) x : -(uint32_t) x;
163 const uint32_t y_abs = (y >= 0) ? (uint32_t) y : -(uint32_t) y;
164 const uint32_t z_abs = (z >= 0) ? (uint32_t) z : -(uint32_t) z;
165 const uint32_t w_abs = (w >= 0) ? (uint32_t) w : -(uint32_t) w;
166
167 // Compute full 64-bit product of 32-bit factors.
168 const uint64_t x_product = (uint64_t) x_abs * (uint64_t) multiplier;
169 const uint64_t y_product = (uint64_t) y_abs * (uint64_t) multiplier;
170 const uint64_t z_product = (uint64_t) z_abs * (uint64_t) multiplier;
171 const uint64_t w_product = (uint64_t) w_abs * (uint64_t) multiplier;
172
173 // Shift the full 64-bit product right with rounding.
174 // Rounding is performed towards closest integer, with midpoints rounded up (same as away from zero).
175 //
176 // Note that although rounding is precomputed, it is dependent on shift value, and on processors with 64-bit
177 // "right shift with rounding" instruction each line below can be represented by just one such instruction
178 // (e.g. VRSHL.U64 on ARM NEON, URSHL in ARM64 Advanced SIMD).
179 const uint32_t x_abs_scaled = (uint32_t)((x_product + rounding) >> shift);
180 const uint32_t y_abs_scaled = (uint32_t)((y_product + rounding) >> shift);
181 const uint32_t z_abs_scaled = (uint32_t)((z_product + rounding) >> shift);
182 const uint32_t w_abs_scaled = (uint32_t)((w_product + rounding) >> shift);
183
184 // Copy the sign of input to scaled absolute input value.
185 //
186 // On x86 processors with SSSE3 instruction set, this operation nicely maps to PSIGND instruction.
187 const int32_t x_scaled = (int32_t)(x >= 0 ? x_abs_scaled : -x_abs_scaled);
188 const int32_t y_scaled = (int32_t)(y >= 0 ? y_abs_scaled : -y_abs_scaled);
189 const int32_t z_scaled = (int32_t)(z >= 0 ? z_abs_scaled : -z_abs_scaled);
190 const int32_t w_scaled = (int32_t)(w >= 0 ? w_abs_scaled : -w_abs_scaled);
191
192 // Clamp scaled value with zero point between (qmin - zero point) and (qmax - zero point).
193 const int32_t x_clamped = x_scaled < smin ? smin : x_scaled > smax ? smax : x_scaled;
194 const int32_t y_clamped = y_scaled < smin ? smin : y_scaled > smax ? smax : y_scaled;
195 const int32_t z_clamped = z_scaled < smin ? smin : z_scaled > smax ? smax : z_scaled;
196 const int32_t w_clamped = w_scaled < smin ? smin : w_scaled > smax ? smax : w_scaled;
197
198 // Add zero point to clamped value.
199 // The result is guaranteed to be in [qmin, qmax] range.
200 //
201 // This addition can not be safely done before clamping, because scaled values are in [-2147483520, 2147483519]
202 // range, so addition of zero point (which can be up to 255) can overflow signed 32-bit integer.
203 const int32_t x_biased = x_clamped + zero_point;
204 const int32_t y_biased = y_clamped + zero_point;
205 const int32_t z_biased = z_clamped + zero_point;
206 const int32_t w_biased = w_clamped + zero_point;
207
208 output[0] = (uint8_t) x_biased;
209 output[1] = (uint8_t) y_biased;
210 output[2] = (uint8_t) z_biased;
211 output[3] = (uint8_t) w_biased;
212 output += 4;
213 }
214 }
215
xnn_requantize_precise__scalar_signed64(size_t n,const int32_t * input,float scale,uint8_t zero_point,uint8_t qmin,uint8_t qmax,uint8_t * output)216 void xnn_requantize_precise__scalar_signed64(
217 size_t n,
218 const int32_t* input,
219 float scale,
220 uint8_t zero_point,
221 uint8_t qmin,
222 uint8_t qmax,
223 uint8_t* output)
224 {
225 assert(n % 4 == 0);
226 assert(scale < 1.0f);
227 assert(scale >= 0x1.0p-32f);
228
229 const uint32_t scale_bits = fp32_to_bits(scale);
230 const int32_t multiplier = ((int32_t) scale_bits & INT32_C(0x007FFFFF)) | INT32_C(0x00800000);
231 const uint32_t shift = 127 + 23 - (scale_bits >> 23);
232 assert(shift >= 24);
233 assert(shift < 56);
234
235 const int64_t rounding = INT64_C(1) << (shift - 1);
236 const int32_t smin = (int32_t)(uint32_t) qmin - (int32_t)(uint32_t) zero_point;
237 const int32_t smax = (int32_t)(uint32_t) qmax - (int32_t)(uint32_t) zero_point;
238 for (; n != 0; n -= 4) {
239 const int32_t x = input[0];
240 const int32_t y = input[1];
241 const int32_t z = input[2];
242 const int32_t w = input[3];
243 input += 4;
244
245 // Compute full 64-bit product of signed 32-bit factors.
246 //
247 // Note: multiplier can be treated as either signed or unsigned.
248 const int64_t x_product = (int64_t) x * (int64_t) multiplier;
249 const int64_t y_product = (int64_t) y * (int64_t) multiplier;
250 const int64_t z_product = (int64_t) z * (int64_t) multiplier;
251 const int64_t w_product = (int64_t) w * (int64_t) multiplier;
252
253 // Adjust product before subsequent shift with rounding up to simulate shift with rounding away from zero.
254 const int64_t x_adjusted_product = x_product - (int64_t)(x < 0);
255 const int64_t y_adjusted_product = y_product - (int64_t)(y < 0);
256 const int64_t z_adjusted_product = z_product - (int64_t)(z < 0);
257 const int64_t w_adjusted_product = w_product - (int64_t)(w < 0);
258
259 // Arithmetically shift the full 64-bit product right with rounding.
260 // Rounding is performed towards closest integer, with midpoints rounded up.
261 //
262 // Note that although rounding is precomputed, it is dependent on shift value, and on processors with 64-bit
263 // "right shift with rounding" instruction each line below can be represented by just one such instruction
264 // (e.g. VRSHL.S64 on ARM NEON, SRSHL in ARM64 Advanced SIMD).
265 const int32_t x_scaled = (int32_t) asr_s64(x_adjusted_product + rounding, shift);
266 const int32_t y_scaled = (int32_t) asr_s64(y_adjusted_product + rounding, shift);
267 const int32_t z_scaled = (int32_t) asr_s64(z_adjusted_product + rounding, shift);
268 const int32_t w_scaled = (int32_t) asr_s64(w_adjusted_product + rounding, shift);
269
270 // Clamp scaled value with zero point between (qmin - zero point) and (qmax - zero point).
271 const int32_t x_clamped = x_scaled < smin ? smin : x_scaled > smax ? smax : x_scaled;
272 const int32_t y_clamped = y_scaled < smin ? smin : y_scaled > smax ? smax : y_scaled;
273 const int32_t z_clamped = z_scaled < smin ? smin : z_scaled > smax ? smax : z_scaled;
274 const int32_t w_clamped = w_scaled < smin ? smin : w_scaled > smax ? smax : w_scaled;
275
276 // Add zero point to clamped value.
277 // The result is guaranteed to be in [qmin, qmax] range.
278 //
279 // This addition can not be safely done before clamping, because scaled values are in [-2147483520, 2147483519]
280 // range, so addition of zero point (which can be up to 255) can overflow signed 32-bit integer.
281 const int32_t x_biased = x_clamped + zero_point;
282 const int32_t y_biased = y_clamped + zero_point;
283 const int32_t z_biased = z_clamped + zero_point;
284 const int32_t w_biased = w_clamped + zero_point;
285
286 output[0] = (uint8_t) x_biased;
287 output[1] = (uint8_t) y_biased;
288 output[2] = (uint8_t) z_biased;
289 output[3] = (uint8_t) w_biased;
290 output += 4;
291 }
292 }
293