1 //
2 // Copyright (C) 2014 LunarG, Inc.
3 // Copyright (C) 2015-2018 Google, Inc.
4 //
5 // All rights reserved.
6 //
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions
9 // are met:
10 //
11 // Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 //
14 // Redistributions in binary form must reproduce the above
15 // copyright notice, this list of conditions and the following
16 // disclaimer in the documentation and/or other materials provided
17 // with the distribution.
18 //
19 // Neither the name of 3Dlabs Inc. Ltd. nor the names of its
20 // contributors may be used to endorse or promote products derived
21 // from this software without specific prior written permission.
22 //
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 // POSSIBILITY OF SUCH DAMAGE.
35
36 // SPIRV-IR
37 //
38 // Simple in-memory representation (IR) of SPIRV. Just for holding
39 // Each function's CFG of blocks. Has this hierarchy:
40 // - Module, which is a list of
41 // - Function, which is a list of
42 // - Block, which is a list of
43 // - Instruction
44 //
45
46 #pragma once
47 #ifndef spvIR_H
48 #define spvIR_H
49
50 #include "spirv.hpp"
51
52 #include <algorithm>
53 #include <cassert>
54 #include <functional>
55 #include <iostream>
56 #include <memory>
57 #include <vector>
58
59 namespace spv {
60
61 class Block;
62 class Function;
63 class Module;
64
65 const Id NoResult = 0;
66 const Id NoType = 0;
67
68 const Decoration NoPrecision = DecorationMax;
69
70 #ifdef __GNUC__
71 # define POTENTIALLY_UNUSED __attribute__((unused))
72 #else
73 # define POTENTIALLY_UNUSED
74 #endif
75
76 POTENTIALLY_UNUSED
77 const MemorySemanticsMask MemorySemanticsAllMemory =
78 (MemorySemanticsMask)(MemorySemanticsUniformMemoryMask |
79 MemorySemanticsWorkgroupMemoryMask |
80 MemorySemanticsAtomicCounterMemoryMask |
81 MemorySemanticsImageMemoryMask);
82
83 struct IdImmediate {
84 bool isId; // true if word is an Id, false if word is an immediate
85 unsigned word;
IdImmediateIdImmediate86 IdImmediate(bool i, unsigned w) : isId(i), word(w) {}
87 };
88
89 //
90 // SPIR-V IR instruction.
91 //
92
93 class Instruction {
94 public:
Instruction(Id resultId,Id typeId,Op opCode)95 Instruction(Id resultId, Id typeId, Op opCode) : resultId(resultId), typeId(typeId), opCode(opCode), block(nullptr) { }
Instruction(Op opCode)96 explicit Instruction(Op opCode) : resultId(NoResult), typeId(NoType), opCode(opCode), block(nullptr) { }
~Instruction()97 virtual ~Instruction() {}
addIdOperand(Id id)98 void addIdOperand(Id id) {
99 operands.push_back(id);
100 idOperand.push_back(true);
101 }
addImmediateOperand(unsigned int immediate)102 void addImmediateOperand(unsigned int immediate) {
103 operands.push_back(immediate);
104 idOperand.push_back(false);
105 }
setImmediateOperand(unsigned idx,unsigned int immediate)106 void setImmediateOperand(unsigned idx, unsigned int immediate) {
107 assert(!idOperand[idx]);
108 operands[idx] = immediate;
109 }
110
addStringOperand(const char * str)111 void addStringOperand(const char* str)
112 {
113 unsigned int word;
114 char* wordString = (char*)&word;
115 char* wordPtr = wordString;
116 int charCount = 0;
117 char c;
118 do {
119 c = *(str++);
120 *(wordPtr++) = c;
121 ++charCount;
122 if (charCount == 4) {
123 addImmediateOperand(word);
124 wordPtr = wordString;
125 charCount = 0;
126 }
127 } while (c != 0);
128
129 // deal with partial last word
130 if (charCount > 0) {
131 // pad with 0s
132 for (; charCount < 4; ++charCount)
133 *(wordPtr++) = 0;
134 addImmediateOperand(word);
135 }
136 }
isIdOperand(int op)137 bool isIdOperand(int op) const { return idOperand[op]; }
setBlock(Block * b)138 void setBlock(Block* b) { block = b; }
getBlock()139 Block* getBlock() const { return block; }
getOpCode()140 Op getOpCode() const { return opCode; }
getNumOperands()141 int getNumOperands() const
142 {
143 assert(operands.size() == idOperand.size());
144 return (int)operands.size();
145 }
getResultId()146 Id getResultId() const { return resultId; }
getTypeId()147 Id getTypeId() const { return typeId; }
getIdOperand(int op)148 Id getIdOperand(int op) const {
149 assert(idOperand[op]);
150 return operands[op];
151 }
getImmediateOperand(int op)152 unsigned int getImmediateOperand(int op) const {
153 assert(!idOperand[op]);
154 return operands[op];
155 }
156
157 // Write out the binary form.
dump(std::vector<unsigned int> & out)158 void dump(std::vector<unsigned int>& out) const
159 {
160 // Compute the wordCount
161 unsigned int wordCount = 1;
162 if (typeId)
163 ++wordCount;
164 if (resultId)
165 ++wordCount;
166 wordCount += (unsigned int)operands.size();
167
168 // Write out the beginning of the instruction
169 out.push_back(((wordCount) << WordCountShift) | opCode);
170 if (typeId)
171 out.push_back(typeId);
172 if (resultId)
173 out.push_back(resultId);
174
175 // Write out the operands
176 for (int op = 0; op < (int)operands.size(); ++op)
177 out.push_back(operands[op]);
178 }
179
180 protected:
181 Instruction(const Instruction&);
182 Id resultId;
183 Id typeId;
184 Op opCode;
185 std::vector<Id> operands; // operands, both <id> and immediates (both are unsigned int)
186 std::vector<bool> idOperand; // true for operands that are <id>, false for immediates
187 Block* block;
188 };
189
190 //
191 // SPIR-V IR block.
192 //
193
194 class Block {
195 public:
196 Block(Id id, Function& parent);
~Block()197 virtual ~Block()
198 {
199 }
200
getId()201 Id getId() { return instructions.front()->getResultId(); }
202
getParent()203 Function& getParent() const { return parent; }
204 void addInstruction(std::unique_ptr<Instruction> inst);
addPredecessor(Block * pred)205 void addPredecessor(Block* pred) { predecessors.push_back(pred); pred->successors.push_back(this);}
addLocalVariable(std::unique_ptr<Instruction> inst)206 void addLocalVariable(std::unique_ptr<Instruction> inst) { localVariables.push_back(std::move(inst)); }
getPredecessors()207 const std::vector<Block*>& getPredecessors() const { return predecessors; }
getSuccessors()208 const std::vector<Block*>& getSuccessors() const { return successors; }
getInstructions()209 const std::vector<std::unique_ptr<Instruction> >& getInstructions() const {
210 return instructions;
211 }
getLocalVariables()212 const std::vector<std::unique_ptr<Instruction> >& getLocalVariables() const { return localVariables; }
setUnreachable()213 void setUnreachable() { unreachable = true; }
isUnreachable()214 bool isUnreachable() const { return unreachable; }
215 // Returns the block's merge instruction, if one exists (otherwise null).
getMergeInstruction()216 const Instruction* getMergeInstruction() const {
217 if (instructions.size() < 2) return nullptr;
218 const Instruction* nextToLast = (instructions.cend() - 2)->get();
219 switch (nextToLast->getOpCode()) {
220 case OpSelectionMerge:
221 case OpLoopMerge:
222 return nextToLast;
223 default:
224 return nullptr;
225 }
226 return nullptr;
227 }
228
229 // Change this block into a canonical dead merge block. Delete instructions
230 // as necessary. A canonical dead merge block has only an OpLabel and an
231 // OpUnreachable.
rewriteAsCanonicalUnreachableMerge()232 void rewriteAsCanonicalUnreachableMerge() {
233 assert(localVariables.empty());
234 // Delete all instructions except for the label.
235 assert(instructions.size() > 0);
236 instructions.resize(1);
237 successors.clear();
238 addInstruction(std::unique_ptr<Instruction>(new Instruction(OpUnreachable)));
239 }
240 // Change this block into a canonical dead continue target branching to the
241 // given header ID. Delete instructions as necessary. A canonical dead continue
242 // target has only an OpLabel and an unconditional branch back to the corresponding
243 // header.
rewriteAsCanonicalUnreachableContinue(Block * header)244 void rewriteAsCanonicalUnreachableContinue(Block* header) {
245 assert(localVariables.empty());
246 // Delete all instructions except for the label.
247 assert(instructions.size() > 0);
248 instructions.resize(1);
249 successors.clear();
250 // Add OpBranch back to the header.
251 assert(header != nullptr);
252 Instruction* branch = new Instruction(OpBranch);
253 branch->addIdOperand(header->getId());
254 addInstruction(std::unique_ptr<Instruction>(branch));
255 successors.push_back(header);
256 }
257
isTerminated()258 bool isTerminated() const
259 {
260 switch (instructions.back()->getOpCode()) {
261 case OpBranch:
262 case OpBranchConditional:
263 case OpSwitch:
264 case OpKill:
265 case OpReturn:
266 case OpReturnValue:
267 case OpUnreachable:
268 return true;
269 default:
270 return false;
271 }
272 }
273
dump(std::vector<unsigned int> & out)274 void dump(std::vector<unsigned int>& out) const
275 {
276 instructions[0]->dump(out);
277 for (int i = 0; i < (int)localVariables.size(); ++i)
278 localVariables[i]->dump(out);
279 for (int i = 1; i < (int)instructions.size(); ++i)
280 instructions[i]->dump(out);
281 }
282
283 protected:
284 Block(const Block&);
285 Block& operator=(Block&);
286
287 // To enforce keeping parent and ownership in sync:
288 friend Function;
289
290 std::vector<std::unique_ptr<Instruction> > instructions;
291 std::vector<Block*> predecessors, successors;
292 std::vector<std::unique_ptr<Instruction> > localVariables;
293 Function& parent;
294
295 // track whether this block is known to be uncreachable (not necessarily
296 // true for all unreachable blocks, but should be set at least
297 // for the extraneous ones introduced by the builder).
298 bool unreachable;
299 };
300
301 // The different reasons for reaching a block in the inReadableOrder traversal.
302 enum ReachReason {
303 // Reachable from the entry block via transfers of control, i.e. branches.
304 ReachViaControlFlow = 0,
305 // A continue target that is not reachable via control flow.
306 ReachDeadContinue,
307 // A merge block that is not reachable via control flow.
308 ReachDeadMerge
309 };
310
311 // Traverses the control-flow graph rooted at root in an order suited for
312 // readable code generation. Invokes callback at every node in the traversal
313 // order. The callback arguments are:
314 // - the block,
315 // - the reason we reached the block,
316 // - if the reason was that block is an unreachable continue or unreachable merge block
317 // then the last parameter is the corresponding header block.
318 void inReadableOrder(Block* root, std::function<void(Block*, ReachReason, Block* header)> callback);
319
320 //
321 // SPIR-V IR Function.
322 //
323
324 class Function {
325 public:
326 Function(Id id, Id resultType, Id functionType, Id firstParam, Module& parent);
~Function()327 virtual ~Function()
328 {
329 for (int i = 0; i < (int)parameterInstructions.size(); ++i)
330 delete parameterInstructions[i];
331
332 for (int i = 0; i < (int)blocks.size(); ++i)
333 delete blocks[i];
334 }
getId()335 Id getId() const { return functionInstruction.getResultId(); }
getParamId(int p)336 Id getParamId(int p) const { return parameterInstructions[p]->getResultId(); }
getParamType(int p)337 Id getParamType(int p) const { return parameterInstructions[p]->getTypeId(); }
338
addBlock(Block * block)339 void addBlock(Block* block) { blocks.push_back(block); }
removeBlock(Block * block)340 void removeBlock(Block* block)
341 {
342 auto found = find(blocks.begin(), blocks.end(), block);
343 assert(found != blocks.end());
344 blocks.erase(found);
345 delete block;
346 }
347
getParent()348 Module& getParent() const { return parent; }
getEntryBlock()349 Block* getEntryBlock() const { return blocks.front(); }
getLastBlock()350 Block* getLastBlock() const { return blocks.back(); }
getBlocks()351 const std::vector<Block*>& getBlocks() const { return blocks; }
352 void addLocalVariable(std::unique_ptr<Instruction> inst);
getReturnType()353 Id getReturnType() const { return functionInstruction.getTypeId(); }
354
setImplicitThis()355 void setImplicitThis() { implicitThis = true; }
hasImplicitThis()356 bool hasImplicitThis() const { return implicitThis; }
357
dump(std::vector<unsigned int> & out)358 void dump(std::vector<unsigned int>& out) const
359 {
360 // OpFunction
361 functionInstruction.dump(out);
362
363 // OpFunctionParameter
364 for (int p = 0; p < (int)parameterInstructions.size(); ++p)
365 parameterInstructions[p]->dump(out);
366
367 // Blocks
368 inReadableOrder(blocks[0], [&out](const Block* b, ReachReason, Block*) { b->dump(out); });
369 Instruction end(0, 0, OpFunctionEnd);
370 end.dump(out);
371 }
372
373 protected:
374 Function(const Function&);
375 Function& operator=(Function&);
376
377 Module& parent;
378 Instruction functionInstruction;
379 std::vector<Instruction*> parameterInstructions;
380 std::vector<Block*> blocks;
381 bool implicitThis; // true if this is a member function expecting to be passed a 'this' as the first argument
382 };
383
384 //
385 // SPIR-V IR Module.
386 //
387
388 class Module {
389 public:
Module()390 Module() {}
~Module()391 virtual ~Module()
392 {
393 // TODO delete things
394 }
395
addFunction(Function * fun)396 void addFunction(Function *fun) { functions.push_back(fun); }
397
mapInstruction(Instruction * instruction)398 void mapInstruction(Instruction *instruction)
399 {
400 spv::Id resultId = instruction->getResultId();
401 // map the instruction's result id
402 if (resultId >= idToInstruction.size())
403 idToInstruction.resize(resultId + 16);
404 idToInstruction[resultId] = instruction;
405 }
406
getInstruction(Id id)407 Instruction* getInstruction(Id id) const { return idToInstruction[id]; }
getFunctions()408 const std::vector<Function*>& getFunctions() const { return functions; }
getTypeId(Id resultId)409 spv::Id getTypeId(Id resultId) const {
410 return idToInstruction[resultId] == nullptr ? NoType : idToInstruction[resultId]->getTypeId();
411 }
getStorageClass(Id typeId)412 StorageClass getStorageClass(Id typeId) const
413 {
414 assert(idToInstruction[typeId]->getOpCode() == spv::OpTypePointer);
415 return (StorageClass)idToInstruction[typeId]->getImmediateOperand(0);
416 }
417
dump(std::vector<unsigned int> & out)418 void dump(std::vector<unsigned int>& out) const
419 {
420 for (int f = 0; f < (int)functions.size(); ++f)
421 functions[f]->dump(out);
422 }
423
424 protected:
425 Module(const Module&);
426 std::vector<Function*> functions;
427
428 // map from result id to instruction having that result id
429 std::vector<Instruction*> idToInstruction;
430
431 // map from a result id to its type id
432 };
433
434 //
435 // Implementation (it's here due to circular type definitions).
436 //
437
438 // Add both
439 // - the OpFunction instruction
440 // - all the OpFunctionParameter instructions
Function(Id id,Id resultType,Id functionType,Id firstParamId,Module & parent)441 __inline Function::Function(Id id, Id resultType, Id functionType, Id firstParamId, Module& parent)
442 : parent(parent), functionInstruction(id, resultType, OpFunction), implicitThis(false)
443 {
444 // OpFunction
445 functionInstruction.addImmediateOperand(FunctionControlMaskNone);
446 functionInstruction.addIdOperand(functionType);
447 parent.mapInstruction(&functionInstruction);
448 parent.addFunction(this);
449
450 // OpFunctionParameter
451 Instruction* typeInst = parent.getInstruction(functionType);
452 int numParams = typeInst->getNumOperands() - 1;
453 for (int p = 0; p < numParams; ++p) {
454 Instruction* param = new Instruction(firstParamId + p, typeInst->getIdOperand(p + 1), OpFunctionParameter);
455 parent.mapInstruction(param);
456 parameterInstructions.push_back(param);
457 }
458 }
459
addLocalVariable(std::unique_ptr<Instruction> inst)460 __inline void Function::addLocalVariable(std::unique_ptr<Instruction> inst)
461 {
462 Instruction* raw_instruction = inst.get();
463 blocks[0]->addLocalVariable(std::move(inst));
464 parent.mapInstruction(raw_instruction);
465 }
466
Block(Id id,Function & parent)467 __inline Block::Block(Id id, Function& parent) : parent(parent), unreachable(false)
468 {
469 instructions.push_back(std::unique_ptr<Instruction>(new Instruction(id, NoType, OpLabel)));
470 instructions.back()->setBlock(this);
471 parent.getParent().mapInstruction(instructions.back().get());
472 }
473
addInstruction(std::unique_ptr<Instruction> inst)474 __inline void Block::addInstruction(std::unique_ptr<Instruction> inst)
475 {
476 Instruction* raw_instruction = inst.get();
477 instructions.push_back(std::move(inst));
478 raw_instruction->setBlock(this);
479 if (raw_instruction->getResultId())
480 parent.getParent().mapInstruction(raw_instruction);
481 }
482
483 } // end spv namespace
484
485 #endif // spvIR_H
486