• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2017 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // This file implements conditional constant propagation as described in
16 //
17 //      Constant propagation with conditional branches,
18 //      Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
19 
20 #include "source/opt/ccp_pass.h"
21 
22 #include <algorithm>
23 #include <limits>
24 
25 #include "source/opt/fold.h"
26 #include "source/opt/function.h"
27 #include "source/opt/module.h"
28 #include "source/opt/propagator.h"
29 
30 namespace spvtools {
31 namespace opt {
32 
33 namespace {
34 
35 // This SSA id is never defined nor referenced in the IR.  It is a special ID
36 // which represents varying values.  When an ID is found to have a varying
37 // value, its entry in the |values_| table maps to kVaryingSSAId.
38 const uint32_t kVaryingSSAId = std::numeric_limits<uint32_t>::max();
39 
40 }  // namespace
41 
IsVaryingValue(uint32_t id) const42 bool CCPPass::IsVaryingValue(uint32_t id) const { return id == kVaryingSSAId; }
43 
MarkInstructionVarying(Instruction * instr)44 SSAPropagator::PropStatus CCPPass::MarkInstructionVarying(Instruction* instr) {
45   assert(instr->result_id() != 0 &&
46          "Instructions with no result cannot be marked varying.");
47   values_[instr->result_id()] = kVaryingSSAId;
48   return SSAPropagator::kVarying;
49 }
50 
VisitPhi(Instruction * phi)51 SSAPropagator::PropStatus CCPPass::VisitPhi(Instruction* phi) {
52   uint32_t meet_val_id = 0;
53 
54   // Implement the lattice meet operation. The result of this Phi instruction is
55   // interesting only if the meet operation over arguments coming through
56   // executable edges yields the same constant value.
57   for (uint32_t i = 2; i < phi->NumOperands(); i += 2) {
58     if (!propagator_->IsPhiArgExecutable(phi, i)) {
59       // Ignore arguments coming through non-executable edges.
60       continue;
61     }
62     uint32_t phi_arg_id = phi->GetSingleWordOperand(i);
63     auto it = values_.find(phi_arg_id);
64     if (it != values_.end()) {
65       // We found an argument with a constant value.  Apply the meet operation
66       // with the previous arguments.
67       if (it->second == kVaryingSSAId) {
68         // The "constant" value is actually a placeholder for varying. Return
69         // varying for this phi.
70         return MarkInstructionVarying(phi);
71       } else if (meet_val_id == 0) {
72         // This is the first argument we find.  Initialize the result to its
73         // constant value id.
74         meet_val_id = it->second;
75       } else if (it->second == meet_val_id) {
76         // The argument is the same constant value already computed. Continue
77         // looking.
78         continue;
79       } else {
80         // We either found a varying value, or another constant value different
81         // from the previous computed meet value.  This Phi will never be
82         // constant.
83         return MarkInstructionVarying(phi);
84       }
85     } else {
86       // The incoming value has no recorded value and is therefore not
87       // interesting. A not interesting value joined with any other value is the
88       // other value.
89       continue;
90     }
91   }
92 
93   // If there are no incoming executable edges, the meet ID will still be 0. In
94   // that case, return not interesting to evaluate the Phi node again.
95   if (meet_val_id == 0) {
96     return SSAPropagator::kNotInteresting;
97   }
98 
99   // All the operands have the same constant value represented by |meet_val_id|.
100   // Set the Phi's result to that value and declare it interesting.
101   values_[phi->result_id()] = meet_val_id;
102   return SSAPropagator::kInteresting;
103 }
104 
VisitAssignment(Instruction * instr)105 SSAPropagator::PropStatus CCPPass::VisitAssignment(Instruction* instr) {
106   assert(instr->result_id() != 0 &&
107          "Expecting an instruction that produces a result");
108 
109   // If this is a copy operation, and the RHS is a known constant, assign its
110   // value to the LHS.
111   if (instr->opcode() == SpvOpCopyObject) {
112     uint32_t rhs_id = instr->GetSingleWordInOperand(0);
113     auto it = values_.find(rhs_id);
114     if (it != values_.end()) {
115       if (IsVaryingValue(it->second)) {
116         return MarkInstructionVarying(instr);
117       } else {
118         values_[instr->result_id()] = it->second;
119         return SSAPropagator::kInteresting;
120       }
121     }
122     return SSAPropagator::kNotInteresting;
123   }
124 
125   // Instructions with a RHS that cannot produce a constant are always varying.
126   if (!instr->IsFoldable()) {
127     return MarkInstructionVarying(instr);
128   }
129 
130   // See if the RHS of the assignment folds into a constant value.
131   auto map_func = [this](uint32_t id) {
132     auto it = values_.find(id);
133     if (it == values_.end() || IsVaryingValue(it->second)) {
134       return id;
135     }
136     return it->second;
137   };
138   Instruction* folded_inst =
139       context()->get_instruction_folder().FoldInstructionToConstant(instr,
140                                                                     map_func);
141   if (folded_inst != nullptr) {
142     // We do not want to change the body of the function by adding new
143     // instructions.  When folding we can only generate new constants.
144     assert(folded_inst->IsConstant() && "CCP is only interested in constant.");
145     values_[instr->result_id()] = folded_inst->result_id();
146     return SSAPropagator::kInteresting;
147   }
148 
149   // Conservatively mark this instruction as varying if any input id is varying.
150   if (!instr->WhileEachInId([this](uint32_t* op_id) {
151         auto iter = values_.find(*op_id);
152         if (iter != values_.end() && IsVaryingValue(iter->second)) return false;
153         return true;
154       })) {
155     return MarkInstructionVarying(instr);
156   }
157 
158   // If not, see if there is a least one unknown operand to the instruction.  If
159   // so, we might be able to fold it later.
160   if (!instr->WhileEachInId([this](uint32_t* op_id) {
161         auto it = values_.find(*op_id);
162         if (it == values_.end()) return false;
163         return true;
164       })) {
165     return SSAPropagator::kNotInteresting;
166   }
167 
168   // Otherwise, we will never be able to fold this instruction, so mark it
169   // varying.
170   return MarkInstructionVarying(instr);
171 }
172 
VisitBranch(Instruction * instr,BasicBlock ** dest_bb) const173 SSAPropagator::PropStatus CCPPass::VisitBranch(Instruction* instr,
174                                                BasicBlock** dest_bb) const {
175   assert(instr->IsBranch() && "Expected a branch instruction.");
176 
177   *dest_bb = nullptr;
178   uint32_t dest_label = 0;
179   if (instr->opcode() == SpvOpBranch) {
180     // An unconditional jump always goes to its unique destination.
181     dest_label = instr->GetSingleWordInOperand(0);
182   } else if (instr->opcode() == SpvOpBranchConditional) {
183     // For a conditional branch, determine whether the predicate selector has a
184     // known value in |values_|.  If it does, set the destination block
185     // according to the selector's boolean value.
186     uint32_t pred_id = instr->GetSingleWordOperand(0);
187     auto it = values_.find(pred_id);
188     if (it == values_.end() || IsVaryingValue(it->second)) {
189       // The predicate has an unknown value, either branch could be taken.
190       return SSAPropagator::kVarying;
191     }
192 
193     // Get the constant value for the predicate selector from the value table.
194     // Use it to decide which branch will be taken.
195     uint32_t pred_val_id = it->second;
196     const analysis::Constant* c = const_mgr_->FindDeclaredConstant(pred_val_id);
197     assert(c && "Expected to find a constant declaration for a known value.");
198     // Undef values should have returned as varying above.
199     assert(c->AsBoolConstant() || c->AsNullConstant());
200     if (c->AsNullConstant()) {
201       dest_label = instr->GetSingleWordOperand(2u);
202     } else {
203       const analysis::BoolConstant* val = c->AsBoolConstant();
204       dest_label = val->value() ? instr->GetSingleWordOperand(1)
205                                 : instr->GetSingleWordOperand(2);
206     }
207   } else {
208     // For an OpSwitch, extract the value taken by the switch selector and check
209     // which of the target literals it matches.  The branch associated with that
210     // literal is the taken branch.
211     assert(instr->opcode() == SpvOpSwitch);
212     if (instr->GetOperand(0).words.size() != 1) {
213       // If the selector is wider than 32-bits, return varying. TODO(dnovillo):
214       // Add support for wider constants.
215       return SSAPropagator::kVarying;
216     }
217     uint32_t select_id = instr->GetSingleWordOperand(0);
218     auto it = values_.find(select_id);
219     if (it == values_.end() || IsVaryingValue(it->second)) {
220       // The selector has an unknown value, any of the branches could be taken.
221       return SSAPropagator::kVarying;
222     }
223 
224     // Get the constant value for the selector from the value table. Use it to
225     // decide which branch will be taken.
226     uint32_t select_val_id = it->second;
227     const analysis::Constant* c =
228         const_mgr_->FindDeclaredConstant(select_val_id);
229     assert(c && "Expected to find a constant declaration for a known value.");
230     // TODO: support 64-bit integer switches.
231     uint32_t constant_cond = 0;
232     if (const analysis::IntConstant* val = c->AsIntConstant()) {
233       constant_cond = val->words()[0];
234     } else {
235       // Undef values should have returned varying above.
236       assert(c->AsNullConstant());
237       constant_cond = 0;
238     }
239 
240     // Start assuming that the selector will take the default value;
241     dest_label = instr->GetSingleWordOperand(1);
242     for (uint32_t i = 2; i < instr->NumOperands(); i += 2) {
243       if (constant_cond == instr->GetSingleWordOperand(i)) {
244         dest_label = instr->GetSingleWordOperand(i + 1);
245         break;
246       }
247     }
248   }
249 
250   assert(dest_label && "Destination label should be set at this point.");
251   *dest_bb = context()->cfg()->block(dest_label);
252   return SSAPropagator::kInteresting;
253 }
254 
VisitInstruction(Instruction * instr,BasicBlock ** dest_bb)255 SSAPropagator::PropStatus CCPPass::VisitInstruction(Instruction* instr,
256                                                     BasicBlock** dest_bb) {
257   *dest_bb = nullptr;
258   if (instr->opcode() == SpvOpPhi) {
259     return VisitPhi(instr);
260   } else if (instr->IsBranch()) {
261     return VisitBranch(instr, dest_bb);
262   } else if (instr->result_id()) {
263     return VisitAssignment(instr);
264   }
265   return SSAPropagator::kVarying;
266 }
267 
ReplaceValues()268 bool CCPPass::ReplaceValues() {
269   bool retval = false;
270   for (const auto& it : values_) {
271     uint32_t id = it.first;
272     uint32_t cst_id = it.second;
273     if (!IsVaryingValue(cst_id) && id != cst_id) {
274       context()->KillNamesAndDecorates(id);
275       retval |= context()->ReplaceAllUsesWith(id, cst_id);
276     }
277   }
278   return retval;
279 }
280 
PropagateConstants(Function * fp)281 bool CCPPass::PropagateConstants(Function* fp) {
282   // Mark function parameters as varying.
283   fp->ForEachParam([this](const Instruction* inst) {
284     values_[inst->result_id()] = kVaryingSSAId;
285   });
286 
287   const auto visit_fn = [this](Instruction* instr, BasicBlock** dest_bb) {
288     return VisitInstruction(instr, dest_bb);
289   };
290 
291   propagator_ =
292       std::unique_ptr<SSAPropagator>(new SSAPropagator(context(), visit_fn));
293 
294   if (propagator_->Run(fp)) {
295     return ReplaceValues();
296   }
297 
298   return false;
299 }
300 
Initialize()301 void CCPPass::Initialize() {
302   const_mgr_ = context()->get_constant_mgr();
303 
304   // Populate the constant table with values from constant declarations in the
305   // module.  The values of each OpConstant declaration is the identity
306   // assignment (i.e., each constant is its own value).
307   for (const auto& inst : get_module()->types_values()) {
308     // Record compile time constant ids. Treat all other global values as
309     // varying.
310     if (inst.IsConstant()) {
311       values_[inst.result_id()] = inst.result_id();
312     } else {
313       values_[inst.result_id()] = kVaryingSSAId;
314     }
315   }
316 }
317 
Process()318 Pass::Status CCPPass::Process() {
319   Initialize();
320 
321   // Process all entry point functions.
322   ProcessFunction pfn = [this](Function* fp) { return PropagateConstants(fp); };
323   bool modified = context()->ProcessReachableCallTree(pfn);
324   return modified ? Pass::Status::SuccessWithChange
325                   : Pass::Status::SuccessWithoutChange;
326 }
327 
328 }  // namespace opt
329 }  // namespace spvtools
330