• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2015-2016 The Khronos Group Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "source/val/function.h"
16 
17 #include <algorithm>
18 #include <cassert>
19 #include <sstream>
20 #include <unordered_map>
21 #include <unordered_set>
22 #include <utility>
23 
24 #include "source/cfa.h"
25 #include "source/val/basic_block.h"
26 #include "source/val/construct.h"
27 #include "source/val/validate.h"
28 
29 namespace spvtools {
30 namespace val {
31 
32 // Universal Limit of ResultID + 1
33 static const uint32_t kInvalidId = 0x400000;
34 
Function(uint32_t function_id,uint32_t result_type_id,SpvFunctionControlMask function_control,uint32_t function_type_id)35 Function::Function(uint32_t function_id, uint32_t result_type_id,
36                    SpvFunctionControlMask function_control,
37                    uint32_t function_type_id)
38     : id_(function_id),
39       function_type_id_(function_type_id),
40       result_type_id_(result_type_id),
41       function_control_(function_control),
42       declaration_type_(FunctionDecl::kFunctionDeclUnknown),
43       end_has_been_registered_(false),
44       blocks_(),
45       current_block_(nullptr),
46       pseudo_entry_block_(0),
47       pseudo_exit_block_(kInvalidId),
48       cfg_constructs_(),
49       variable_ids_(),
50       parameter_ids_() {}
51 
IsFirstBlock(uint32_t block_id) const52 bool Function::IsFirstBlock(uint32_t block_id) const {
53   return !ordered_blocks_.empty() && *first_block() == block_id;
54 }
55 
RegisterFunctionParameter(uint32_t parameter_id,uint32_t type_id)56 spv_result_t Function::RegisterFunctionParameter(uint32_t parameter_id,
57                                                  uint32_t type_id) {
58   assert(current_block_ == nullptr &&
59          "RegisterFunctionParameter can only be called when parsing the binary "
60          "ouside of a block");
61   // TODO(umar): Validate function parameter type order and count
62   // TODO(umar): Use these variables to validate parameter type
63   (void)parameter_id;
64   (void)type_id;
65   return SPV_SUCCESS;
66 }
67 
RegisterLoopMerge(uint32_t merge_id,uint32_t continue_id)68 spv_result_t Function::RegisterLoopMerge(uint32_t merge_id,
69                                          uint32_t continue_id) {
70   RegisterBlock(merge_id, false);
71   RegisterBlock(continue_id, false);
72   BasicBlock& merge_block = blocks_.at(merge_id);
73   BasicBlock& continue_target_block = blocks_.at(continue_id);
74   assert(current_block_ &&
75          "RegisterLoopMerge must be called when called within a block");
76 
77   current_block_->set_type(kBlockTypeLoop);
78   merge_block.set_type(kBlockTypeMerge);
79   continue_target_block.set_type(kBlockTypeContinue);
80   Construct& loop_construct =
81       AddConstruct({ConstructType::kLoop, current_block_, &merge_block});
82   Construct& continue_construct =
83       AddConstruct({ConstructType::kContinue, &continue_target_block});
84 
85   continue_construct.set_corresponding_constructs({&loop_construct});
86   loop_construct.set_corresponding_constructs({&continue_construct});
87   merge_block_header_[&merge_block] = current_block_;
88   if (continue_target_headers_.find(&continue_target_block) ==
89       continue_target_headers_.end()) {
90     continue_target_headers_[&continue_target_block] = {current_block_};
91   } else {
92     continue_target_headers_[&continue_target_block].push_back(current_block_);
93   }
94 
95   return SPV_SUCCESS;
96 }
97 
RegisterSelectionMerge(uint32_t merge_id)98 spv_result_t Function::RegisterSelectionMerge(uint32_t merge_id) {
99   RegisterBlock(merge_id, false);
100   BasicBlock& merge_block = blocks_.at(merge_id);
101   current_block_->set_type(kBlockTypeSelection);
102   merge_block.set_type(kBlockTypeMerge);
103   merge_block_header_[&merge_block] = current_block_;
104 
105   AddConstruct({ConstructType::kSelection, current_block(), &merge_block});
106 
107   return SPV_SUCCESS;
108 }
109 
RegisterSetFunctionDeclType(FunctionDecl type)110 spv_result_t Function::RegisterSetFunctionDeclType(FunctionDecl type) {
111   assert(declaration_type_ == FunctionDecl::kFunctionDeclUnknown);
112   declaration_type_ = type;
113   return SPV_SUCCESS;
114 }
115 
RegisterBlock(uint32_t block_id,bool is_definition)116 spv_result_t Function::RegisterBlock(uint32_t block_id, bool is_definition) {
117   assert(
118       declaration_type_ == FunctionDecl::kFunctionDeclDefinition &&
119       "RegisterBlocks can only be called after declaration_type_ is defined");
120 
121   std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block;
122   bool success = false;
123   tie(inserted_block, success) =
124       blocks_.insert({block_id, BasicBlock(block_id)});
125   if (is_definition) {  // new block definition
126     assert(current_block_ == nullptr &&
127            "Register Block can only be called when parsing a binary outside of "
128            "a BasicBlock");
129 
130     undefined_blocks_.erase(block_id);
131     current_block_ = &inserted_block->second;
132     ordered_blocks_.push_back(current_block_);
133     if (IsFirstBlock(block_id)) current_block_->set_reachable(true);
134   } else if (success) {  // Block doesn't exsist but this is not a definition
135     undefined_blocks_.insert(block_id);
136   }
137 
138   return SPV_SUCCESS;
139 }
140 
RegisterBlockEnd(std::vector<uint32_t> next_list,SpvOp branch_instruction)141 void Function::RegisterBlockEnd(std::vector<uint32_t> next_list,
142                                 SpvOp branch_instruction) {
143   assert(
144       current_block_ &&
145       "RegisterBlockEnd can only be called when parsing a binary in a block");
146   std::vector<BasicBlock*> next_blocks;
147   next_blocks.reserve(next_list.size());
148 
149   std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block;
150   bool success;
151   for (uint32_t successor_id : next_list) {
152     tie(inserted_block, success) =
153         blocks_.insert({successor_id, BasicBlock(successor_id)});
154     if (success) {
155       undefined_blocks_.insert(successor_id);
156     }
157     next_blocks.push_back(&inserted_block->second);
158   }
159 
160   if (current_block_->is_type(kBlockTypeLoop)) {
161     // For each loop header, record the set of its successors, and include
162     // its continue target if the continue target is not the loop header
163     // itself.
164     std::vector<BasicBlock*>& next_blocks_plus_continue_target =
165         loop_header_successors_plus_continue_target_map_[current_block_];
166     next_blocks_plus_continue_target = next_blocks;
167     auto continue_target =
168         FindConstructForEntryBlock(current_block_, ConstructType::kLoop)
169             .corresponding_constructs()
170             .back()
171             ->entry_block();
172     if (continue_target != current_block_) {
173       next_blocks_plus_continue_target.push_back(continue_target);
174     }
175   }
176 
177   current_block_->RegisterBranchInstruction(branch_instruction);
178   current_block_->RegisterSuccessors(next_blocks);
179   current_block_ = nullptr;
180   return;
181 }
182 
RegisterFunctionEnd()183 void Function::RegisterFunctionEnd() {
184   if (!end_has_been_registered_) {
185     end_has_been_registered_ = true;
186 
187     ComputeAugmentedCFG();
188   }
189 }
190 
block_count() const191 size_t Function::block_count() const { return blocks_.size(); }
192 
undefined_block_count() const193 size_t Function::undefined_block_count() const {
194   return undefined_blocks_.size();
195 }
196 
ordered_blocks() const197 const std::vector<BasicBlock*>& Function::ordered_blocks() const {
198   return ordered_blocks_;
199 }
ordered_blocks()200 std::vector<BasicBlock*>& Function::ordered_blocks() { return ordered_blocks_; }
201 
current_block() const202 const BasicBlock* Function::current_block() const { return current_block_; }
current_block()203 BasicBlock* Function::current_block() { return current_block_; }
204 
constructs() const205 const std::list<Construct>& Function::constructs() const {
206   return cfg_constructs_;
207 }
constructs()208 std::list<Construct>& Function::constructs() { return cfg_constructs_; }
209 
first_block() const210 const BasicBlock* Function::first_block() const {
211   if (ordered_blocks_.empty()) return nullptr;
212   return ordered_blocks_[0];
213 }
first_block()214 BasicBlock* Function::first_block() {
215   if (ordered_blocks_.empty()) return nullptr;
216   return ordered_blocks_[0];
217 }
218 
IsBlockType(uint32_t merge_block_id,BlockType type) const219 bool Function::IsBlockType(uint32_t merge_block_id, BlockType type) const {
220   bool ret = false;
221   const BasicBlock* block;
222   std::tie(block, std::ignore) = GetBlock(merge_block_id);
223   if (block) {
224     ret = block->is_type(type);
225   }
226   return ret;
227 }
228 
GetBlock(uint32_t block_id) const229 std::pair<const BasicBlock*, bool> Function::GetBlock(uint32_t block_id) const {
230   const auto b = blocks_.find(block_id);
231   if (b != end(blocks_)) {
232     const BasicBlock* block = &(b->second);
233     bool defined =
234         undefined_blocks_.find(block->id()) == std::end(undefined_blocks_);
235     return std::make_pair(block, defined);
236   } else {
237     return std::make_pair(nullptr, false);
238   }
239 }
240 
GetBlock(uint32_t block_id)241 std::pair<BasicBlock*, bool> Function::GetBlock(uint32_t block_id) {
242   const BasicBlock* out;
243   bool defined;
244   std::tie(out, defined) =
245       const_cast<const Function*>(this)->GetBlock(block_id);
246   return std::make_pair(const_cast<BasicBlock*>(out), defined);
247 }
248 
AugmentedCFGSuccessorsFunction() const249 Function::GetBlocksFunction Function::AugmentedCFGSuccessorsFunction() const {
250   return [this](const BasicBlock* block) {
251     auto where = augmented_successors_map_.find(block);
252     return where == augmented_successors_map_.end() ? block->successors()
253                                                     : &(*where).second;
254   };
255 }
256 
257 Function::GetBlocksFunction
AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge() const258 Function::AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge() const {
259   return [this](const BasicBlock* block) {
260     auto where = loop_header_successors_plus_continue_target_map_.find(block);
261     return where == loop_header_successors_plus_continue_target_map_.end()
262                ? AugmentedCFGSuccessorsFunction()(block)
263                : &(*where).second;
264   };
265 }
266 
AugmentedCFGPredecessorsFunction() const267 Function::GetBlocksFunction Function::AugmentedCFGPredecessorsFunction() const {
268   return [this](const BasicBlock* block) {
269     auto where = augmented_predecessors_map_.find(block);
270     return where == augmented_predecessors_map_.end() ? block->predecessors()
271                                                       : &(*where).second;
272   };
273 }
274 
ComputeAugmentedCFG()275 void Function::ComputeAugmentedCFG() {
276   // Compute the successors of the pseudo-entry block, and
277   // the predecessors of the pseudo exit block.
278   auto succ_func = [](const BasicBlock* b) { return b->successors(); };
279   auto pred_func = [](const BasicBlock* b) { return b->predecessors(); };
280   CFA<BasicBlock>::ComputeAugmentedCFG(
281       ordered_blocks_, &pseudo_entry_block_, &pseudo_exit_block_,
282       &augmented_successors_map_, &augmented_predecessors_map_, succ_func,
283       pred_func);
284 }
285 
AddConstruct(const Construct & new_construct)286 Construct& Function::AddConstruct(const Construct& new_construct) {
287   cfg_constructs_.push_back(new_construct);
288   auto& result = cfg_constructs_.back();
289   entry_block_to_construct_[std::make_pair(new_construct.entry_block(),
290                                            new_construct.type())] = &result;
291   return result;
292 }
293 
FindConstructForEntryBlock(const BasicBlock * entry_block,ConstructType type)294 Construct& Function::FindConstructForEntryBlock(const BasicBlock* entry_block,
295                                                 ConstructType type) {
296   auto where =
297       entry_block_to_construct_.find(std::make_pair(entry_block, type));
298   assert(where != entry_block_to_construct_.end());
299   auto construct_ptr = (*where).second;
300   assert(construct_ptr);
301   return *construct_ptr;
302 }
303 
GetBlockDepth(BasicBlock * bb)304 int Function::GetBlockDepth(BasicBlock* bb) {
305   // Guard against nullptr.
306   if (!bb) {
307     return 0;
308   }
309   // Only calculate the depth if it's not already calculated.
310   // This function uses memoization to avoid duplicate CFG depth calculations.
311   if (block_depth_.find(bb) != block_depth_.end()) {
312     return block_depth_[bb];
313   }
314 
315   BasicBlock* bb_dom = bb->immediate_dominator();
316   if (!bb_dom || bb == bb_dom) {
317     // This block has no dominator, so it's at depth 0.
318     block_depth_[bb] = 0;
319   } else if (bb->is_type(kBlockTypeContinue)) {
320     // This rule must precede the rule for merge blocks in order to set up
321     // depths correctly. If a block is both a merge and continue then the merge
322     // is nested within the continue's loop (or the graph is incorrect).
323     // The depth of the continue block entry point is 1 + loop header depth.
324     Construct* continue_construct =
325         entry_block_to_construct_[std::make_pair(bb, ConstructType::kContinue)];
326     assert(continue_construct);
327     // Continue construct has only 1 corresponding construct (loop header).
328     Construct* loop_construct =
329         continue_construct->corresponding_constructs()[0];
330     assert(loop_construct);
331     BasicBlock* loop_header = loop_construct->entry_block();
332     // The continue target may be the loop itself (while 1).
333     // In such cases, the depth of the continue block is: 1 + depth of the
334     // loop's dominator block.
335     if (loop_header == bb) {
336       block_depth_[bb] = 1 + GetBlockDepth(bb_dom);
337     } else {
338       block_depth_[bb] = 1 + GetBlockDepth(loop_header);
339     }
340   } else if (bb->is_type(kBlockTypeMerge)) {
341     // If this is a merge block, its depth is equal to the block before
342     // branching.
343     BasicBlock* header = merge_block_header_[bb];
344     assert(header);
345     block_depth_[bb] = GetBlockDepth(header);
346   } else if (bb_dom->is_type(kBlockTypeSelection) ||
347              bb_dom->is_type(kBlockTypeLoop)) {
348     // The dominator of the given block is a header block. So, the nesting
349     // depth of this block is: 1 + nesting depth of the header.
350     block_depth_[bb] = 1 + GetBlockDepth(bb_dom);
351   } else {
352     block_depth_[bb] = GetBlockDepth(bb_dom);
353   }
354   return block_depth_[bb];
355 }
356 
RegisterExecutionModelLimitation(SpvExecutionModel model,const std::string & message)357 void Function::RegisterExecutionModelLimitation(SpvExecutionModel model,
358                                                 const std::string& message) {
359   execution_model_limitations_.push_back(
360       [model, message](SpvExecutionModel in_model, std::string* out_message) {
361         if (model != in_model) {
362           if (out_message) {
363             *out_message = message;
364           }
365           return false;
366         }
367         return true;
368       });
369 }
370 
IsCompatibleWithExecutionModel(SpvExecutionModel model,std::string * reason) const371 bool Function::IsCompatibleWithExecutionModel(SpvExecutionModel model,
372                                               std::string* reason) const {
373   bool return_value = true;
374   std::stringstream ss_reason;
375 
376   for (const auto& is_compatible : execution_model_limitations_) {
377     std::string message;
378     if (!is_compatible(model, &message)) {
379       if (!reason) return false;
380       return_value = false;
381       if (!message.empty()) {
382         ss_reason << message << "\n";
383       }
384     }
385   }
386 
387   if (!return_value && reason) {
388     *reason = ss_reason.str();
389   }
390 
391   return return_value;
392 }
393 
CheckLimitations(const ValidationState_t & _,const Function * entry_point,std::string * reason) const394 bool Function::CheckLimitations(const ValidationState_t& _,
395                                 const Function* entry_point,
396                                 std::string* reason) const {
397   bool return_value = true;
398   std::stringstream ss_reason;
399 
400   for (const auto& is_compatible : limitations_) {
401     std::string message;
402     if (!is_compatible(_, entry_point, &message)) {
403       if (!reason) return false;
404       return_value = false;
405       if (!message.empty()) {
406         ss_reason << message << "\n";
407       }
408     }
409   }
410 
411   if (!return_value && reason) {
412     *reason = ss_reason.str();
413   }
414 
415   return return_value;
416 }
417 
418 }  // namespace val
419 }  // namespace spvtools
420