• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <common/interrupt_props.h>
13 #include <drivers/arm/gicv3.h>
14 #include <lib/spinlock.h>
15 
16 #include "gicv3_private.h"
17 
18 const gicv3_driver_data_t *gicv3_driver_data;
19 
20 /*
21  * Spinlock to guard registers needing read-modify-write. APIs protected by this
22  * spinlock are used either at boot time (when only a single CPU is active), or
23  * when the system is fully coherent.
24  */
25 static spinlock_t gic_lock;
26 
27 /*
28  * Redistributor power operations are weakly bound so that they can be
29  * overridden
30  */
31 #pragma weak gicv3_rdistif_off
32 #pragma weak gicv3_rdistif_on
33 
34 
35 /* Helper macros to save and restore GICD registers to and from the context */
36 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
37 	do {								\
38 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num); \
39 				int_id += (1U << REG##_SHIFT)) {	\
40 			gicd_write_##reg(base, int_id,			\
41 				ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT]); \
42 		}							\
43 	} while (false)
44 
45 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
46 	do {								\
47 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num); \
48 				int_id += (1U << REG##_SHIFT)) {	\
49 			ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT] =\
50 					gicd_read_##reg(base, int_id);	\
51 		}							\
52 	} while (false)
53 
54 
55 /*******************************************************************************
56  * This function initialises the ARM GICv3 driver in EL3 with provided platform
57  * inputs.
58  ******************************************************************************/
gicv3_driver_init(const gicv3_driver_data_t * plat_driver_data)59 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
60 {
61 	unsigned int gic_version;
62 	unsigned int gicv2_compat;
63 
64 	assert(plat_driver_data != NULL);
65 	assert(plat_driver_data->gicd_base != 0U);
66 	assert(plat_driver_data->rdistif_num != 0U);
67 	assert(plat_driver_data->rdistif_base_addrs != NULL);
68 
69 	assert(IS_IN_EL3());
70 
71 	assert((plat_driver_data->interrupt_props_num != 0U) ?
72 	       (plat_driver_data->interrupt_props != NULL) : 1);
73 
74 	/* Check for system register support */
75 #ifndef __aarch64__
76 	assert((read_id_pfr1() &
77 			(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
78 #else
79 	assert((read_id_aa64pfr0_el1() &
80 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
81 #endif /* !__aarch64__ */
82 
83 	/* The GIC version should be 3.0 */
84 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
85 	gic_version >>= PIDR2_ARCH_REV_SHIFT;
86 	gic_version &= PIDR2_ARCH_REV_MASK;
87 	assert(gic_version == ARCH_REV_GICV3);
88 
89 	/*
90 	 * Find out whether the GIC supports the GICv2 compatibility mode.
91 	 * The ARE_S bit resets to 0 if supported
92 	 */
93 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
94 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
95 	gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
96 
97 	if (plat_driver_data->gicr_base != 0U) {
98 		/*
99 		 * Find the base address of each implemented Redistributor interface.
100 		 * The number of interfaces should be equal to the number of CPUs in the
101 		 * system. The memory for saving these addresses has to be allocated by
102 		 * the platform port
103 		 */
104 		gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
105 						   plat_driver_data->rdistif_num,
106 						   plat_driver_data->gicr_base,
107 						   plat_driver_data->mpidr_to_core_pos);
108 #if !HW_ASSISTED_COHERENCY
109 		/*
110 		 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
111 		 */
112 		flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
113 			plat_driver_data->rdistif_num *
114 			sizeof(*(plat_driver_data->rdistif_base_addrs)));
115 #endif
116 	}
117 	gicv3_driver_data = plat_driver_data;
118 
119 	/*
120 	 * The GIC driver data is initialized by the primary CPU with caches
121 	 * enabled. When the secondary CPU boots up, it initializes the
122 	 * GICC/GICR interface with the caches disabled. Hence flush the
123 	 * driver data to ensure coherency. This is not required if the
124 	 * platform has HW_ASSISTED_COHERENCY enabled.
125 	 */
126 #if !HW_ASSISTED_COHERENCY
127 	flush_dcache_range((uintptr_t)&gicv3_driver_data,
128 		sizeof(gicv3_driver_data));
129 	flush_dcache_range((uintptr_t)gicv3_driver_data,
130 		sizeof(*gicv3_driver_data));
131 #endif
132 
133 	INFO("GICv3 with%s legacy support detected."
134 			" ARM GICv3 driver initialized in EL3\n",
135 			(gicv2_compat == 0U) ? "" : "out");
136 
137 }
138 
139 /*******************************************************************************
140  * This function initialises the GIC distributor interface based upon the data
141  * provided by the platform while initialising the driver.
142  ******************************************************************************/
gicv3_distif_init(void)143 void __init gicv3_distif_init(void)
144 {
145 	unsigned int bitmap = 0;
146 
147 	assert(gicv3_driver_data != NULL);
148 	assert(gicv3_driver_data->gicd_base != 0U);
149 
150 	assert(IS_IN_EL3());
151 
152 	/*
153 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
154 	 * the ARE_S bit. The Distributor might generate a system error
155 	 * otherwise.
156 	 */
157 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
158 		      CTLR_ENABLE_G0_BIT |
159 		      CTLR_ENABLE_G1S_BIT |
160 		      CTLR_ENABLE_G1NS_BIT,
161 		      RWP_TRUE);
162 
163 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
164 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
165 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
166 
167 	/* Set the default attribute of all SPIs */
168 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
169 
170 	bitmap = gicv3_secure_spis_config_props(
171 			gicv3_driver_data->gicd_base,
172 			gicv3_driver_data->interrupt_props,
173 			gicv3_driver_data->interrupt_props_num);
174 
175 	/* Enable the secure SPIs now that they have been configured */
176 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
177 }
178 
179 /*******************************************************************************
180  * This function initialises the GIC Redistributor interface of the calling CPU
181  * (identified by the 'proc_num' parameter) based upon the data provided by the
182  * platform while initialising the driver.
183  ******************************************************************************/
gicv3_rdistif_init(unsigned int proc_num)184 void gicv3_rdistif_init(unsigned int proc_num)
185 {
186 	uintptr_t gicr_base;
187 	unsigned int bitmap = 0U;
188 	uint32_t ctlr;
189 
190 	assert(gicv3_driver_data != NULL);
191 	assert(proc_num < gicv3_driver_data->rdistif_num);
192 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
193 	assert(gicv3_driver_data->gicd_base != 0U);
194 
195 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
196 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
197 
198 	assert(IS_IN_EL3());
199 
200 	/* Power on redistributor */
201 	gicv3_rdistif_on(proc_num);
202 
203 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
204 	assert(gicr_base != 0U);
205 
206 	/* Set the default attribute of all SGIs and PPIs */
207 	gicv3_ppi_sgi_config_defaults(gicr_base);
208 
209 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
210 			gicv3_driver_data->interrupt_props,
211 			gicv3_driver_data->interrupt_props_num);
212 
213 	/* Enable interrupt groups as required, if not already */
214 	if ((ctlr & bitmap) != bitmap)
215 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
216 }
217 
218 /*******************************************************************************
219  * Functions to perform power operations on GIC Redistributor
220  ******************************************************************************/
gicv3_rdistif_off(unsigned int proc_num)221 void gicv3_rdistif_off(unsigned int proc_num)
222 {
223 	return;
224 }
225 
gicv3_rdistif_on(unsigned int proc_num)226 void gicv3_rdistif_on(unsigned int proc_num)
227 {
228 	return;
229 }
230 
231 /*******************************************************************************
232  * This function enables the GIC CPU interface of the calling CPU using only
233  * system register accesses.
234  ******************************************************************************/
gicv3_cpuif_enable(unsigned int proc_num)235 void gicv3_cpuif_enable(unsigned int proc_num)
236 {
237 	uintptr_t gicr_base;
238 	u_register_t scr_el3;
239 	unsigned int icc_sre_el3;
240 
241 	assert(gicv3_driver_data != NULL);
242 	assert(proc_num < gicv3_driver_data->rdistif_num);
243 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
244 	assert(IS_IN_EL3());
245 
246 	/* Mark the connected core as awake */
247 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
248 	gicv3_rdistif_mark_core_awake(gicr_base);
249 
250 	/* Disable the legacy interrupt bypass */
251 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
252 
253 	/*
254 	 * Enable system register access for EL3 and allow lower exception
255 	 * levels to configure the same for themselves. If the legacy mode is
256 	 * not supported, the SRE bit is RAO/WI
257 	 */
258 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
259 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
260 
261 	scr_el3 = read_scr_el3();
262 
263 	/*
264 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
265 	 * ICC_SRE_EL2 registers.
266 	 */
267 	write_scr_el3(scr_el3 | SCR_NS_BIT);
268 	isb();
269 
270 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
271 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
272 	isb();
273 
274 	/* Switch to secure state. */
275 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
276 	isb();
277 
278 	/* Write the secure ICC_SRE_EL1 register */
279 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
280 	isb();
281 
282 	/* Program the idle priority in the PMR */
283 	write_icc_pmr_el1(GIC_PRI_MASK);
284 
285 	/* Enable Group0 interrupts */
286 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
287 
288 	/* Enable Group1 Secure interrupts */
289 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
290 				IGRPEN1_EL3_ENABLE_G1S_BIT);
291 	isb();
292 }
293 
294 /*******************************************************************************
295  * This function disables the GIC CPU interface of the calling CPU using
296  * only system register accesses.
297  ******************************************************************************/
gicv3_cpuif_disable(unsigned int proc_num)298 void gicv3_cpuif_disable(unsigned int proc_num)
299 {
300 	uintptr_t gicr_base;
301 
302 	assert(gicv3_driver_data != NULL);
303 	assert(proc_num < gicv3_driver_data->rdistif_num);
304 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
305 
306 	assert(IS_IN_EL3());
307 
308 	/* Disable legacy interrupt bypass */
309 	write_icc_sre_el3(read_icc_sre_el3() |
310 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
311 
312 	/* Disable Group0 interrupts */
313 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
314 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
315 
316 	/* Disable Group1 Secure and Non-Secure interrupts */
317 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
318 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
319 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
320 
321 	/* Synchronise accesses to group enable registers */
322 	isb();
323 
324 	/* Mark the connected core as asleep */
325 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
326 	assert(gicr_base != 0U);
327 	gicv3_rdistif_mark_core_asleep(gicr_base);
328 }
329 
330 /*******************************************************************************
331  * This function returns the id of the highest priority pending interrupt at
332  * the GIC cpu interface.
333  ******************************************************************************/
gicv3_get_pending_interrupt_id(void)334 unsigned int gicv3_get_pending_interrupt_id(void)
335 {
336 	unsigned int id;
337 
338 	assert(IS_IN_EL3());
339 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
340 
341 	/*
342 	 * If the ID is special identifier corresponding to G1S or G1NS
343 	 * interrupt, then read the highest pending group 1 interrupt.
344 	 */
345 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
346 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
347 
348 	return id;
349 }
350 
351 /*******************************************************************************
352  * This function returns the type of the highest priority pending interrupt at
353  * the GIC cpu interface. The return values can be one of the following :
354  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
355  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
356  *   0 - 1019           : The interrupt type is secure Group 0.
357  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
358  *                            sufficient priority to be signaled
359  ******************************************************************************/
gicv3_get_pending_interrupt_type(void)360 unsigned int gicv3_get_pending_interrupt_type(void)
361 {
362 	assert(IS_IN_EL3());
363 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
364 }
365 
366 /*******************************************************************************
367  * This function returns the type of the interrupt id depending upon the group
368  * this interrupt has been configured under by the interrupt controller i.e.
369  * group0 or group1 Secure / Non Secure. The return value can be one of the
370  * following :
371  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
372  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
373  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
374  *                   interrupt.
375  ******************************************************************************/
gicv3_get_interrupt_type(unsigned int id,unsigned int proc_num)376 unsigned int gicv3_get_interrupt_type(unsigned int id,
377 					  unsigned int proc_num)
378 {
379 	unsigned int igroup, grpmodr;
380 	uintptr_t gicr_base;
381 
382 	assert(IS_IN_EL3());
383 	assert(gicv3_driver_data != NULL);
384 
385 	/* Ensure the parameters are valid */
386 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
387 	assert(proc_num < gicv3_driver_data->rdistif_num);
388 
389 	/* All LPI interrupts are Group 1 non secure */
390 	if (id >= MIN_LPI_ID)
391 		return INTR_GROUP1NS;
392 
393 	if (id < MIN_SPI_ID) {
394 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
395 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
396 		igroup = gicr_get_igroupr0(gicr_base, id);
397 		grpmodr = gicr_get_igrpmodr0(gicr_base, id);
398 	} else {
399 		assert(gicv3_driver_data->gicd_base != 0U);
400 		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
401 		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
402 	}
403 
404 	/*
405 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
406 	 * interrupt
407 	 */
408 	if (igroup != 0U)
409 		return INTR_GROUP1NS;
410 
411 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
412 	if (grpmodr != 0U)
413 		return INTR_GROUP1S;
414 
415 	/* Else it is a Group 0 Secure interrupt */
416 	return INTR_GROUP0;
417 }
418 
419 /*****************************************************************************
420  * Function to save and disable the GIC ITS register context. The power
421  * management of GIC ITS is implementation-defined and this function doesn't
422  * save any memory structures required to support ITS. As the sequence to save
423  * this state is implementation defined, it should be executed in platform
424  * specific code. Calling this function alone and then powering down the GIC and
425  * ITS without implementing the aforementioned platform specific code will
426  * corrupt the ITS state.
427  *
428  * This function must be invoked after the GIC CPU interface is disabled.
429  *****************************************************************************/
gicv3_its_save_disable(uintptr_t gits_base,gicv3_its_ctx_t * const its_ctx)430 void gicv3_its_save_disable(uintptr_t gits_base, gicv3_its_ctx_t * const its_ctx)
431 {
432 	unsigned int i;
433 
434 	assert(gicv3_driver_data != NULL);
435 	assert(IS_IN_EL3());
436 	assert(its_ctx != NULL);
437 	assert(gits_base != 0U);
438 
439 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
440 
441 	/* Disable the ITS */
442 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
443 					(~GITS_CTLR_ENABLED_BIT));
444 
445 	/* Wait for quiescent state */
446 	gits_wait_for_quiescent_bit(gits_base);
447 
448 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
449 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
450 
451 	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
452 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
453 }
454 
455 /*****************************************************************************
456  * Function to restore the GIC ITS register context. The power
457  * management of GIC ITS is implementation defined and this function doesn't
458  * restore any memory structures required to support ITS. The assumption is
459  * that these structures are in memory and are retained during system suspend.
460  *
461  * This must be invoked before the GIC CPU interface is enabled.
462  *****************************************************************************/
gicv3_its_restore(uintptr_t gits_base,const gicv3_its_ctx_t * const its_ctx)463 void gicv3_its_restore(uintptr_t gits_base, const gicv3_its_ctx_t * const its_ctx)
464 {
465 	unsigned int i;
466 
467 	assert(gicv3_driver_data != NULL);
468 	assert(IS_IN_EL3());
469 	assert(its_ctx != NULL);
470 	assert(gits_base != 0U);
471 
472 	/* Assert that the GITS is disabled and quiescent */
473 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
474 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
475 
476 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
477 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
478 
479 	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
480 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
481 
482 	/* Restore the ITS CTLR but leave the ITS disabled */
483 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
484 			(~GITS_CTLR_ENABLED_BIT));
485 }
486 
487 /*****************************************************************************
488  * Function to save the GIC Redistributor register context. This function
489  * must be invoked after CPU interface disable and prior to Distributor save.
490  *****************************************************************************/
gicv3_rdistif_save(unsigned int proc_num,gicv3_redist_ctx_t * const rdist_ctx)491 void gicv3_rdistif_save(unsigned int proc_num, gicv3_redist_ctx_t * const rdist_ctx)
492 {
493 	uintptr_t gicr_base;
494 	unsigned int int_id;
495 
496 	assert(gicv3_driver_data != NULL);
497 	assert(proc_num < gicv3_driver_data->rdistif_num);
498 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
499 	assert(IS_IN_EL3());
500 	assert(rdist_ctx != NULL);
501 
502 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
503 
504 	/*
505 	 * Wait for any write to GICR_CTLR to complete before trying to save any
506 	 * state.
507 	 */
508 	gicr_wait_for_pending_write(gicr_base);
509 
510 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
511 
512 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
513 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
514 
515 	rdist_ctx->gicr_igroupr0 = gicr_read_igroupr0(gicr_base);
516 	rdist_ctx->gicr_isenabler0 = gicr_read_isenabler0(gicr_base);
517 	rdist_ctx->gicr_ispendr0 = gicr_read_ispendr0(gicr_base);
518 	rdist_ctx->gicr_isactiver0 = gicr_read_isactiver0(gicr_base);
519 	rdist_ctx->gicr_icfgr0 = gicr_read_icfgr0(gicr_base);
520 	rdist_ctx->gicr_icfgr1 = gicr_read_icfgr1(gicr_base);
521 	rdist_ctx->gicr_igrpmodr0 = gicr_read_igrpmodr0(gicr_base);
522 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
523 	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
524 			int_id += (1U << IPRIORITYR_SHIFT)) {
525 		rdist_ctx->gicr_ipriorityr[(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT] =
526 				gicr_read_ipriorityr(gicr_base, int_id);
527 	}
528 
529 
530 	/*
531 	 * Call the pre-save hook that implements the IMP DEF sequence that may
532 	 * be required on some GIC implementations. As this may need to access
533 	 * the Redistributor registers, we pass it proc_num.
534 	 */
535 	gicv3_distif_pre_save(proc_num);
536 }
537 
538 /*****************************************************************************
539  * Function to restore the GIC Redistributor register context. We disable
540  * LPI and per-cpu interrupts before we start restore of the Redistributor.
541  * This function must be invoked after Distributor restore but prior to
542  * CPU interface enable. The pending and active interrupts are restored
543  * after the interrupts are fully configured and enabled.
544  *****************************************************************************/
gicv3_rdistif_init_restore(unsigned int proc_num,const gicv3_redist_ctx_t * const rdist_ctx)545 void gicv3_rdistif_init_restore(unsigned int proc_num,
546 				const gicv3_redist_ctx_t * const rdist_ctx)
547 {
548 	uintptr_t gicr_base;
549 	unsigned int int_id;
550 
551 	assert(gicv3_driver_data != NULL);
552 	assert(proc_num < gicv3_driver_data->rdistif_num);
553 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
554 	assert(IS_IN_EL3());
555 	assert(rdist_ctx != NULL);
556 
557 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
558 
559 	/* Power on redistributor */
560 	gicv3_rdistif_on(proc_num);
561 
562 	/*
563 	 * Call the post-restore hook that implements the IMP DEF sequence that
564 	 * may be required on some GIC implementations. As this may need to
565 	 * access the Redistributor registers, we pass it proc_num.
566 	 */
567 	gicv3_distif_post_restore(proc_num);
568 
569 	/*
570 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
571 	 * more scalable approach as it avoids clearing the enable bits in the
572 	 * GICD_CTLR
573 	 */
574 	gicr_write_icenabler0(gicr_base, ~0U);
575 	/* Wait for pending writes to GICR_ICENABLER */
576 	gicr_wait_for_pending_write(gicr_base);
577 
578 	/*
579 	 * Disable the LPIs to avoid unpredictable behavior when writing to
580 	 * GICR_PROPBASER and GICR_PENDBASER.
581 	 */
582 	gicr_write_ctlr(gicr_base,
583 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
584 
585 	/* Restore registers' content */
586 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
587 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
588 
589 	gicr_write_igroupr0(gicr_base, rdist_ctx->gicr_igroupr0);
590 
591 	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
592 			int_id += (1U << IPRIORITYR_SHIFT)) {
593 		gicr_write_ipriorityr(gicr_base, int_id,
594 		rdist_ctx->gicr_ipriorityr[
595 				(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT]);
596 	}
597 
598 	gicr_write_icfgr0(gicr_base, rdist_ctx->gicr_icfgr0);
599 	gicr_write_icfgr1(gicr_base, rdist_ctx->gicr_icfgr1);
600 	gicr_write_igrpmodr0(gicr_base, rdist_ctx->gicr_igrpmodr0);
601 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
602 
603 	/* Restore after group and priorities are set */
604 	gicr_write_ispendr0(gicr_base, rdist_ctx->gicr_ispendr0);
605 	gicr_write_isactiver0(gicr_base, rdist_ctx->gicr_isactiver0);
606 
607 	/*
608 	 * Wait for all writes to the Distributor to complete before enabling
609 	 * the SGI and PPIs.
610 	 */
611 	gicr_wait_for_upstream_pending_write(gicr_base);
612 	gicr_write_isenabler0(gicr_base, rdist_ctx->gicr_isenabler0);
613 
614 	/*
615 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
616 	 * the first write to GICR_CTLR was still in flight (this write only
617 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
618 	 * bit).
619 	 */
620 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
621 	gicr_wait_for_pending_write(gicr_base);
622 }
623 
624 /*****************************************************************************
625  * Function to save the GIC Distributor register context. This function
626  * must be invoked after CPU interface disable and Redistributor save.
627  *****************************************************************************/
gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)628 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
629 {
630 	unsigned int num_ints;
631 
632 	assert(gicv3_driver_data != NULL);
633 	assert(gicv3_driver_data->gicd_base != 0U);
634 	assert(IS_IN_EL3());
635 	assert(dist_ctx != NULL);
636 
637 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
638 
639 	num_ints = gicd_read_typer(gicd_base);
640 	num_ints &= TYPER_IT_LINES_NO_MASK;
641 	num_ints = (num_ints + 1U) << 5;
642 
643 	/* Filter out special INTIDs 1020-1023 */
644 	if (num_ints > (MAX_SPI_ID + 1U))
645 		num_ints = MAX_SPI_ID + 1U;
646 
647 	/* Wait for pending write to complete */
648 	gicd_wait_for_pending_write(gicd_base);
649 
650 	/* Save the GICD_CTLR */
651 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
652 
653 	/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
654 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
655 
656 	/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
657 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
658 
659 	/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
660 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
661 
662 	/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
663 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
664 
665 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
666 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
667 
668 	/* Save GICD_ICFGR for INTIDs 32 - 1019 */
669 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
670 
671 	/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
672 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
673 
674 	/* Save GICD_NSACR for INTIDs 32 - 1019 */
675 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
676 
677 	/* Save GICD_IROUTER for INTIDs 32 - 1019 */
678 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
679 
680 	/*
681 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
682 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
683 	 * driver.
684 	 */
685 }
686 
687 /*****************************************************************************
688  * Function to restore the GIC Distributor register context. We disable G0, G1S
689  * and G1NS interrupt groups before we start restore of the Distributor. This
690  * function must be invoked prior to Redistributor restore and CPU interface
691  * enable. The pending and active interrupts are restored after the interrupts
692  * are fully configured and enabled.
693  *****************************************************************************/
gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)694 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
695 {
696 	unsigned int num_ints = 0U;
697 
698 	assert(gicv3_driver_data != NULL);
699 	assert(gicv3_driver_data->gicd_base != 0U);
700 	assert(IS_IN_EL3());
701 	assert(dist_ctx != NULL);
702 
703 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
704 
705 	/*
706 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
707 	 * the ARE_S bit. The Distributor might generate a system error
708 	 * otherwise.
709 	 */
710 	gicd_clr_ctlr(gicd_base,
711 		      CTLR_ENABLE_G0_BIT |
712 		      CTLR_ENABLE_G1S_BIT |
713 		      CTLR_ENABLE_G1NS_BIT,
714 		      RWP_TRUE);
715 
716 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
717 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
718 
719 	num_ints = gicd_read_typer(gicd_base);
720 	num_ints &= TYPER_IT_LINES_NO_MASK;
721 	num_ints = (num_ints + 1U) << 5;
722 
723 	/* Filter out special INTIDs 1020-1023 */
724 	if (num_ints > (MAX_SPI_ID + 1U))
725 		num_ints = MAX_SPI_ID + 1U;
726 
727 	/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
728 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
729 
730 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
731 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
732 
733 	/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
734 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
735 
736 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
737 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
738 
739 	/* Restore GICD_NSACR for INTIDs 32 - 1019 */
740 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
741 
742 	/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
743 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
744 
745 	/*
746 	 * Restore ISENABLER, ISPENDR and ISACTIVER after the interrupts are
747 	 * configured.
748 	 */
749 
750 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
751 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
752 
753 	/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
754 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
755 
756 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
757 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
758 
759 	/* Restore the GICD_CTLR */
760 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
761 	gicd_wait_for_pending_write(gicd_base);
762 
763 }
764 
765 /*******************************************************************************
766  * This function gets the priority of the interrupt the processor is currently
767  * servicing.
768  ******************************************************************************/
gicv3_get_running_priority(void)769 unsigned int gicv3_get_running_priority(void)
770 {
771 	return (unsigned int)read_icc_rpr_el1();
772 }
773 
774 /*******************************************************************************
775  * This function checks if the interrupt identified by id is active (whether the
776  * state is either active, or active and pending). The proc_num is used if the
777  * interrupt is SGI or PPI and programs the corresponding Redistributor
778  * interface.
779  ******************************************************************************/
gicv3_get_interrupt_active(unsigned int id,unsigned int proc_num)780 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
781 {
782 	unsigned int value;
783 
784 	assert(gicv3_driver_data != NULL);
785 	assert(gicv3_driver_data->gicd_base != 0U);
786 	assert(proc_num < gicv3_driver_data->rdistif_num);
787 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
788 	assert(id <= MAX_SPI_ID);
789 
790 	if (id < MIN_SPI_ID) {
791 		/* For SGIs and PPIs */
792 		value = gicr_get_isactiver0(
793 				gicv3_driver_data->rdistif_base_addrs[proc_num], id);
794 	} else {
795 		value = gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
796 	}
797 
798 	return value;
799 }
800 
801 /*******************************************************************************
802  * This function enables the interrupt identified by id. The proc_num
803  * is used if the interrupt is SGI or PPI, and programs the corresponding
804  * Redistributor interface.
805  ******************************************************************************/
gicv3_enable_interrupt(unsigned int id,unsigned int proc_num)806 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
807 {
808 	assert(gicv3_driver_data != NULL);
809 	assert(gicv3_driver_data->gicd_base != 0U);
810 	assert(proc_num < gicv3_driver_data->rdistif_num);
811 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
812 	assert(id <= MAX_SPI_ID);
813 
814 	/*
815 	 * Ensure that any shared variable updates depending on out of band
816 	 * interrupt trigger are observed before enabling interrupt.
817 	 */
818 	dsbishst();
819 	if (id < MIN_SPI_ID) {
820 		/* For SGIs and PPIs */
821 		gicr_set_isenabler0(
822 				gicv3_driver_data->rdistif_base_addrs[proc_num],
823 				id);
824 	} else {
825 		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
826 	}
827 }
828 
829 /*******************************************************************************
830  * This function disables the interrupt identified by id. The proc_num
831  * is used if the interrupt is SGI or PPI, and programs the corresponding
832  * Redistributor interface.
833  ******************************************************************************/
gicv3_disable_interrupt(unsigned int id,unsigned int proc_num)834 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
835 {
836 	assert(gicv3_driver_data != NULL);
837 	assert(gicv3_driver_data->gicd_base != 0U);
838 	assert(proc_num < gicv3_driver_data->rdistif_num);
839 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
840 	assert(id <= MAX_SPI_ID);
841 
842 	/*
843 	 * Disable interrupt, and ensure that any shared variable updates
844 	 * depending on out of band interrupt trigger are observed afterwards.
845 	 */
846 	if (id < MIN_SPI_ID) {
847 		/* For SGIs and PPIs */
848 		gicr_set_icenabler0(
849 				gicv3_driver_data->rdistif_base_addrs[proc_num],
850 				id);
851 
852 		/* Write to clear enable requires waiting for pending writes */
853 		gicr_wait_for_pending_write(
854 				gicv3_driver_data->rdistif_base_addrs[proc_num]);
855 	} else {
856 		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
857 
858 		/* Write to clear enable requires waiting for pending writes */
859 		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
860 	}
861 
862 	dsbishst();
863 }
864 
865 /*******************************************************************************
866  * This function sets the interrupt priority as supplied for the given interrupt
867  * id.
868  ******************************************************************************/
gicv3_set_interrupt_priority(unsigned int id,unsigned int proc_num,unsigned int priority)869 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
870 		unsigned int priority)
871 {
872 	uintptr_t gicr_base;
873 
874 	assert(gicv3_driver_data != NULL);
875 	assert(gicv3_driver_data->gicd_base != 0U);
876 	assert(proc_num < gicv3_driver_data->rdistif_num);
877 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
878 	assert(id <= MAX_SPI_ID);
879 
880 	if (id < MIN_SPI_ID) {
881 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
882 		gicr_set_ipriorityr(gicr_base, id, priority);
883 	} else {
884 		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
885 	}
886 }
887 
888 /*******************************************************************************
889  * This function assigns group for the interrupt identified by id. The proc_num
890  * is used if the interrupt is SGI or PPI, and programs the corresponding
891  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
892  ******************************************************************************/
gicv3_set_interrupt_type(unsigned int id,unsigned int proc_num,unsigned int type)893 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
894 		unsigned int type)
895 {
896 	bool igroup = false, grpmod = false;
897 	uintptr_t gicr_base;
898 
899 	assert(gicv3_driver_data != NULL);
900 	assert(gicv3_driver_data->gicd_base != 0U);
901 	assert(proc_num < gicv3_driver_data->rdistif_num);
902 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
903 
904 	switch (type) {
905 	case INTR_GROUP1S:
906 		igroup = false;
907 		grpmod = true;
908 		break;
909 	case INTR_GROUP0:
910 		igroup = false;
911 		grpmod = false;
912 		break;
913 	case INTR_GROUP1NS:
914 		igroup = true;
915 		grpmod = false;
916 		break;
917 	default:
918 		assert(false);
919 		break;
920 	}
921 
922 	if (id < MIN_SPI_ID) {
923 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
924 		if (igroup)
925 			gicr_set_igroupr0(gicr_base, id);
926 		else
927 			gicr_clr_igroupr0(gicr_base, id);
928 
929 		if (grpmod)
930 			gicr_set_igrpmodr0(gicr_base, id);
931 		else
932 			gicr_clr_igrpmodr0(gicr_base, id);
933 	} else {
934 		/* Serialize read-modify-write to Distributor registers */
935 		spin_lock(&gic_lock);
936 		if (igroup)
937 			gicd_set_igroupr(gicv3_driver_data->gicd_base, id);
938 		else
939 			gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
940 
941 		if (grpmod)
942 			gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id);
943 		else
944 			gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
945 		spin_unlock(&gic_lock);
946 	}
947 }
948 
949 /*******************************************************************************
950  * This function raises the specified Secure Group 0 SGI.
951  *
952  * The target parameter must be a valid MPIDR in the system.
953  ******************************************************************************/
gicv3_raise_secure_g0_sgi(unsigned int sgi_num,u_register_t target)954 void gicv3_raise_secure_g0_sgi(unsigned int sgi_num, u_register_t target)
955 {
956 	unsigned int tgt, aff3, aff2, aff1, aff0;
957 	uint64_t sgi_val;
958 
959 	/* Verify interrupt number is in the SGI range */
960 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
961 
962 	/* Extract affinity fields from target */
963 	aff0 = MPIDR_AFFLVL0_VAL(target);
964 	aff1 = MPIDR_AFFLVL1_VAL(target);
965 	aff2 = MPIDR_AFFLVL2_VAL(target);
966 	aff3 = MPIDR_AFFLVL3_VAL(target);
967 
968 	/*
969 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
970 	 * this PE.
971 	 */
972 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
973 	tgt = BIT_32(aff0);
974 
975 	/* Raise SGI to PE specified by its affinity */
976 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
977 			tgt);
978 
979 	/*
980 	 * Ensure that any shared variable updates depending on out of band
981 	 * interrupt trigger are observed before raising SGI.
982 	 */
983 	dsbishst();
984 	write_icc_sgi0r_el1(sgi_val);
985 	isb();
986 }
987 
988 /*******************************************************************************
989  * This function sets the interrupt routing for the given SPI interrupt id.
990  * The interrupt routing is specified in routing mode and mpidr.
991  *
992  * The routing mode can be either of:
993  *  - GICV3_IRM_ANY
994  *  - GICV3_IRM_PE
995  *
996  * The mpidr is the affinity of the PE to which the interrupt will be routed,
997  * and is ignored for routing mode GICV3_IRM_ANY.
998  ******************************************************************************/
gicv3_set_spi_routing(unsigned int id,unsigned int irm,u_register_t mpidr)999 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1000 {
1001 	unsigned long long aff;
1002 	uint64_t router;
1003 
1004 	assert(gicv3_driver_data != NULL);
1005 	assert(gicv3_driver_data->gicd_base != 0U);
1006 
1007 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1008 	assert((id >= MIN_SPI_ID) && (id <= MAX_SPI_ID));
1009 
1010 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1011 	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
1012 
1013 	/*
1014 	 * In implementations that do not require 1 of N distribution of SPIs,
1015 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1016 	 */
1017 	if (irm == GICV3_IRM_ANY) {
1018 		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
1019 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1020 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1021 			panic();
1022 		}
1023 	}
1024 }
1025 
1026 /*******************************************************************************
1027  * This function clears the pending status of an interrupt identified by id.
1028  * The proc_num is used if the interrupt is SGI or PPI, and programs the
1029  * corresponding Redistributor interface.
1030  ******************************************************************************/
gicv3_clear_interrupt_pending(unsigned int id,unsigned int proc_num)1031 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1032 {
1033 	assert(gicv3_driver_data != NULL);
1034 	assert(gicv3_driver_data->gicd_base != 0U);
1035 	assert(proc_num < gicv3_driver_data->rdistif_num);
1036 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1037 
1038 	/*
1039 	 * Clear pending interrupt, and ensure that any shared variable updates
1040 	 * depending on out of band interrupt trigger are observed afterwards.
1041 	 */
1042 	if (id < MIN_SPI_ID) {
1043 		/* For SGIs and PPIs */
1044 		gicr_set_icpendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
1045 				id);
1046 	} else {
1047 		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
1048 	}
1049 	dsbishst();
1050 }
1051 
1052 /*******************************************************************************
1053  * This function sets the pending status of an interrupt identified by id.
1054  * The proc_num is used if the interrupt is SGI or PPI and programs the
1055  * corresponding Redistributor interface.
1056  ******************************************************************************/
gicv3_set_interrupt_pending(unsigned int id,unsigned int proc_num)1057 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1058 {
1059 	assert(gicv3_driver_data != NULL);
1060 	assert(gicv3_driver_data->gicd_base != 0U);
1061 	assert(proc_num < gicv3_driver_data->rdistif_num);
1062 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1063 
1064 	/*
1065 	 * Ensure that any shared variable updates depending on out of band
1066 	 * interrupt trigger are observed before setting interrupt pending.
1067 	 */
1068 	dsbishst();
1069 	if (id < MIN_SPI_ID) {
1070 		/* For SGIs and PPIs */
1071 		gicr_set_ispendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
1072 				id);
1073 	} else {
1074 		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
1075 	}
1076 }
1077 
1078 /*******************************************************************************
1079  * This function sets the PMR register with the supplied value. Returns the
1080  * original PMR.
1081  ******************************************************************************/
gicv3_set_pmr(unsigned int mask)1082 unsigned int gicv3_set_pmr(unsigned int mask)
1083 {
1084 	unsigned int old_mask;
1085 
1086 	old_mask = (uint32_t) read_icc_pmr_el1();
1087 
1088 	/*
1089 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1090 	 * before potential out of band interrupt trigger because of PMR update.
1091 	 * PMR system register writes are self-synchronizing, so no ISB required
1092 	 * thereafter.
1093 	 */
1094 	dsbishst();
1095 	write_icc_pmr_el1(mask);
1096 
1097 	return old_mask;
1098 }
1099 
1100 /*******************************************************************************
1101  * This function delegates the responsibility of discovering the corresponding
1102  * Redistributor frames to each CPU itself. It is a modified version of
1103  * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
1104  * unlike the previous way in which only the Primary CPU did the discovery of
1105  * all the Redistributor frames for every CPU. It also handles the scenario in
1106  * which the frames of various CPUs are not contiguous in physical memory.
1107  ******************************************************************************/
gicv3_rdistif_probe(const uintptr_t gicr_frame)1108 int gicv3_rdistif_probe(const uintptr_t gicr_frame)
1109 {
1110 	u_register_t mpidr;
1111 	unsigned int proc_num, proc_self;
1112 	uint64_t typer_val;
1113 	uintptr_t rdistif_base;
1114 	bool gicr_frame_found = false;
1115 
1116 	assert(gicv3_driver_data->gicr_base == 0U);
1117 
1118 	/* Ensure this function is called with Data Cache enabled */
1119 #ifndef __aarch64__
1120 	assert((read_sctlr() & SCTLR_C_BIT) != 0U);
1121 #else
1122 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1123 #endif /* !__aarch64__ */
1124 
1125 	proc_self = gicv3_driver_data->mpidr_to_core_pos(read_mpidr_el1());
1126 	rdistif_base = gicr_frame;
1127 	do {
1128 		typer_val = gicr_read_typer(rdistif_base);
1129 		if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
1130 			mpidr = mpidr_from_gicr_typer(typer_val);
1131 			proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
1132 		} else {
1133 			proc_num = (unsigned int)(typer_val >> TYPER_PROC_NUM_SHIFT) &
1134 					TYPER_PROC_NUM_MASK;
1135 		}
1136 		if (proc_num == proc_self) {
1137 			/* The base address doesn't need to be initialized on
1138 			 * every warm boot.
1139 			 */
1140 			if (gicv3_driver_data->rdistif_base_addrs[proc_num] != 0U)
1141 				return 0;
1142 			gicv3_driver_data->rdistif_base_addrs[proc_num] =
1143 			rdistif_base;
1144 			gicr_frame_found = true;
1145 			break;
1146 		}
1147 		rdistif_base += (uintptr_t)(ULL(1) << GICR_PCPUBASE_SHIFT);
1148 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
1149 
1150 	if (!gicr_frame_found)
1151 		return -1;
1152 
1153 	/*
1154 	 * Flush the driver data to ensure coherency. This is
1155 	 * not required if platform has HW_ASSISTED_COHERENCY
1156 	 * enabled.
1157 	 */
1158 #if !HW_ASSISTED_COHERENCY
1159 	/*
1160 	 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
1161 	 */
1162 	flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
1163 		sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
1164 #endif
1165 	return 0; /* Found matching GICR frame */
1166 }
1167