• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <common/bl_common.h>
16 #include <context.h>
17 #include <lib/el3_runtime/context_mgmt.h>
18 #include <lib/extensions/amu.h>
19 #include <lib/utils.h>
20 #include <plat/common/platform.h>
21 #include <smccc_helpers.h>
22 
23 /*******************************************************************************
24  * Context management library initialisation routine. This library is used by
25  * runtime services to share pointers to 'cpu_context' structures for the secure
26  * and non-secure states. Management of the structures and their associated
27  * memory is not done by the context management library e.g. the PSCI service
28  * manages the cpu context used for entry from and exit to the non-secure state.
29  * The Secure payload manages the context(s) corresponding to the secure state.
30  * It also uses this library to get access to the non-secure
31  * state cpu context pointers.
32  ******************************************************************************/
cm_init(void)33 void cm_init(void)
34 {
35 	/*
36 	 * The context management library has only global data to initialize, but
37 	 * that will be done when the BSS is zeroed out
38 	 */
39 }
40 
41 /*******************************************************************************
42  * The following function initializes the cpu_context 'ctx' for
43  * first use, and sets the initial entrypoint state as specified by the
44  * entry_point_info structure.
45  *
46  * The security state to initialize is determined by the SECURE attribute
47  * of the entry_point_info.
48  *
49  * The EE and ST attributes are used to configure the endianness and secure
50  * timer availability for the new execution context.
51  *
52  * To prepare the register state for entry call cm_prepare_el3_exit() and
53  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
54  * cm_e1_sysreg_context_restore().
55  ******************************************************************************/
cm_setup_context(cpu_context_t * ctx,const entry_point_info_t * ep)56 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
57 {
58 	unsigned int security_state;
59 	uint32_t scr, sctlr;
60 	regs_t *reg_ctx;
61 
62 	assert(ctx != NULL);
63 
64 	security_state = GET_SECURITY_STATE(ep->h.attr);
65 
66 	/* Clear any residual register values from the context */
67 	zeromem(ctx, sizeof(*ctx));
68 
69 	reg_ctx = get_regs_ctx(ctx);
70 
71 	/*
72 	 * Base the context SCR on the current value, adjust for entry point
73 	 * specific requirements
74 	 */
75 	scr = read_scr();
76 	scr &= ~(SCR_NS_BIT | SCR_HCE_BIT);
77 
78 	if (security_state != SECURE)
79 		scr |= SCR_NS_BIT;
80 
81 	if (security_state != SECURE) {
82 		/*
83 		 * Set up SCTLR for the Non-secure context.
84 		 *
85 		 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
86 		 *
87 		 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
88 		 *  required by PSCI specification)
89 		 *
90 		 * Set remaining SCTLR fields to their architecturally defined
91 		 * values. Some fields reset to an IMPLEMENTATION DEFINED value:
92 		 *
93 		 * SCTLR.TE: Set to zero so that exceptions to an Exception
94 		 *  Level executing at PL1 are taken to A32 state.
95 		 *
96 		 * SCTLR.V: Set to zero to select the normal exception vectors
97 		 *  with base address held in VBAR.
98 		 */
99 		assert(((ep->spsr >> SPSR_E_SHIFT) & SPSR_E_MASK) ==
100 			(EP_GET_EE(ep->h.attr) >> EP_EE_SHIFT));
101 
102 		sctlr = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
103 		sctlr |= (SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_V_BIT));
104 		write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr);
105 	}
106 
107 	/*
108 	 * The target exception level is based on the spsr mode requested. If
109 	 * execution is requested to hyp mode, HVC is enabled via SCR.HCE.
110 	 */
111 	if (GET_M32(ep->spsr) == MODE32_hyp)
112 		scr |= SCR_HCE_BIT;
113 
114 	/*
115 	 * Store the initialised values for SCTLR and SCR in the cpu_context.
116 	 * The Hyp mode registers are not part of the saved context and are
117 	 * set-up in cm_prepare_el3_exit().
118 	 */
119 	write_ctx_reg(reg_ctx, CTX_SCR, scr);
120 	write_ctx_reg(reg_ctx, CTX_LR, ep->pc);
121 	write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr);
122 
123 	/*
124 	 * Store the r0-r3 value from the entrypoint into the context
125 	 * Use memcpy as we are in control of the layout of the structures
126 	 */
127 	memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t));
128 }
129 
130 /*******************************************************************************
131  * Enable architecture extensions on first entry to Non-secure world.
132  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
133  * it is zero.
134  ******************************************************************************/
enable_extensions_nonsecure(bool el2_unused)135 static void enable_extensions_nonsecure(bool el2_unused)
136 {
137 #if IMAGE_BL32
138 #if ENABLE_AMU
139 	amu_enable(el2_unused);
140 #endif
141 #endif
142 }
143 
144 /*******************************************************************************
145  * The following function initializes the cpu_context for a CPU specified by
146  * its `cpu_idx` for first use, and sets the initial entrypoint state as
147  * specified by the entry_point_info structure.
148  ******************************************************************************/
cm_init_context_by_index(unsigned int cpu_idx,const entry_point_info_t * ep)149 void cm_init_context_by_index(unsigned int cpu_idx,
150 			      const entry_point_info_t *ep)
151 {
152 	cpu_context_t *ctx;
153 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
154 	cm_setup_context(ctx, ep);
155 }
156 
157 /*******************************************************************************
158  * The following function initializes the cpu_context for the current CPU
159  * for first use, and sets the initial entrypoint state as specified by the
160  * entry_point_info structure.
161  ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)162 void cm_init_my_context(const entry_point_info_t *ep)
163 {
164 	cpu_context_t *ctx;
165 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
166 	cm_setup_context(ctx, ep);
167 }
168 
169 /*******************************************************************************
170  * Prepare the CPU system registers for first entry into secure or normal world
171  *
172  * If execution is requested to hyp mode, HSCTLR is initialized
173  * If execution is requested to non-secure PL1, and the CPU supports
174  * HYP mode then HYP mode is disabled by configuring all necessary HYP mode
175  * registers.
176  ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)177 void cm_prepare_el3_exit(uint32_t security_state)
178 {
179 	uint32_t hsctlr, scr;
180 	cpu_context_t *ctx = cm_get_context(security_state);
181 	bool el2_unused = false;
182 
183 	assert(ctx != NULL);
184 
185 	if (security_state == NON_SECURE) {
186 		scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR);
187 		if ((scr & SCR_HCE_BIT) != 0U) {
188 			/* Use SCTLR value to initialize HSCTLR */
189 			hsctlr = read_ctx_reg(get_regs_ctx(ctx),
190 						 CTX_NS_SCTLR);
191 			hsctlr |= HSCTLR_RES1;
192 			/* Temporarily set the NS bit to access HSCTLR */
193 			write_scr(read_scr() | SCR_NS_BIT);
194 			/*
195 			 * Make sure the write to SCR is complete so that
196 			 * we can access HSCTLR
197 			 */
198 			isb();
199 			write_hsctlr(hsctlr);
200 			isb();
201 
202 			write_scr(read_scr() & ~SCR_NS_BIT);
203 			isb();
204 		} else if ((read_id_pfr1() &
205 			(ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) != 0U) {
206 			el2_unused = true;
207 
208 			/*
209 			 * Set the NS bit to access NS copies of certain banked
210 			 * registers
211 			 */
212 			write_scr(read_scr() | SCR_NS_BIT);
213 			isb();
214 
215 			/*
216 			 * Hyp / PL2 present but unused, need to disable safely.
217 			 * HSCTLR can be ignored in this case.
218 			 *
219 			 * Set HCR to its architectural reset value so that
220 			 * Non-secure operations do not trap to Hyp mode.
221 			 */
222 			write_hcr(HCR_RESET_VAL);
223 
224 			/*
225 			 * Set HCPTR to its architectural reset value so that
226 			 * Non-secure access from EL1 or EL0 to trace and to
227 			 * Advanced SIMD and floating point functionality does
228 			 * not trap to Hyp mode.
229 			 */
230 			write_hcptr(HCPTR_RESET_VAL);
231 
232 			/*
233 			 * Initialise CNTHCTL. All fields are architecturally
234 			 * UNKNOWN on reset and are set to zero except for
235 			 * field(s) listed below.
236 			 *
237 			 * CNTHCTL.PL1PCEN: Disable traps to Hyp mode of
238 			 *  Non-secure EL0 and EL1 accessed to the physical
239 			 *  timer registers.
240 			 *
241 			 * CNTHCTL.PL1PCTEN: Disable traps to Hyp mode of
242 			 *  Non-secure EL0 and EL1 accessed to the physical
243 			 *  counter registers.
244 			 */
245 			write_cnthctl(CNTHCTL_RESET_VAL |
246 					PL1PCEN_BIT | PL1PCTEN_BIT);
247 
248 			/*
249 			 * Initialise CNTVOFF to zero as it resets to an
250 			 * IMPLEMENTATION DEFINED value.
251 			 */
252 			write64_cntvoff(0);
253 
254 			/*
255 			 * Set VPIDR and VMPIDR to match MIDR_EL1 and MPIDR
256 			 * respectively.
257 			 */
258 			write_vpidr(read_midr());
259 			write_vmpidr(read_mpidr());
260 
261 			/*
262 			 * Initialise VTTBR, setting all fields rather than
263 			 * relying on the hw. Some fields are architecturally
264 			 * UNKNOWN at reset.
265 			 *
266 			 * VTTBR.VMID: Set to zero which is the architecturally
267 			 *  defined reset value. Even though EL1&0 stage 2
268 			 *  address translation is disabled, cache maintenance
269 			 *  operations depend on the VMID.
270 			 *
271 			 * VTTBR.BADDR: Set to zero as EL1&0 stage 2 address
272 			 *  translation is disabled.
273 			 */
274 			write64_vttbr(VTTBR_RESET_VAL &
275 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
276 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
277 
278 			/*
279 			 * Initialise HDCR, setting all the fields rather than
280 			 * relying on hw.
281 			 *
282 			 * HDCR.HPMN: Set to value of PMCR.N which is the
283 			 *  architecturally-defined reset value.
284 			 *
285 			 * HDCR.HLP: Set to one so that event counter
286 			 *  overflow, that is recorded in PMOVSCLR[0-30],
287 			 *  occurs on the increment that changes
288 			 *  PMEVCNTR<n>[63] from 1 to 0, when ARMv8.5-PMU is
289 			 *  implemented. This bit is RES0 in versions of the
290 			 *  architecture earlier than ARMv8.5, setting it to 1
291 			 *  doesn't have any effect on them.
292 			 *  This bit is Reserved, UNK/SBZP in ARMv7.
293 			 *
294 			 * HDCR.HPME: Set to zero to disable EL2 Event
295 			 *  counters.
296 			 */
297 #if (ARM_ARCH_MAJOR > 7)
298 			write_hdcr((HDCR_RESET_VAL | HDCR_HLP_BIT |
299 				   ((read_pmcr() & PMCR_N_BITS) >>
300 				    PMCR_N_SHIFT)) & ~HDCR_HPME_BIT);
301 #else
302 			write_hdcr((HDCR_RESET_VAL |
303 				   ((read_pmcr() & PMCR_N_BITS) >>
304 				    PMCR_N_SHIFT)) & ~HDCR_HPME_BIT);
305 #endif
306 			/*
307 			 * Set HSTR to its architectural reset value so that
308 			 * access to system registers in the cproc=1111
309 			 * encoding space do not trap to Hyp mode.
310 			 */
311 			write_hstr(HSTR_RESET_VAL);
312 			/*
313 			 * Set CNTHP_CTL to its architectural reset value to
314 			 * disable the EL2 physical timer and prevent timer
315 			 * interrupts. Some fields are architecturally UNKNOWN
316 			 * on reset and are set to zero.
317 			 */
318 			write_cnthp_ctl(CNTHP_CTL_RESET_VAL);
319 			isb();
320 
321 			write_scr(read_scr() & ~SCR_NS_BIT);
322 			isb();
323 		}
324 		enable_extensions_nonsecure(el2_unused);
325 	}
326 }
327