• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 
10 #include <platform_def.h>
11 
12 #include <arch.h>
13 #include <arch_features.h>
14 #include <arch_helpers.h>
15 #include <lib/cassert.h>
16 #include <lib/utils_def.h>
17 #include <lib/xlat_tables/xlat_tables_v2.h>
18 
19 #include "../xlat_tables_private.h"
20 
21 #if (ARM_ARCH_MAJOR == 7) && !defined(ARMV7_SUPPORTS_LARGE_PAGE_ADDRESSING)
22 #error ARMv7 target does not support LPAE MMU descriptors
23 #endif
24 
25 /*
26  * Returns true if the provided granule size is supported, false otherwise.
27  */
xlat_arch_is_granule_size_supported(size_t size)28 bool xlat_arch_is_granule_size_supported(size_t size)
29 {
30 	/*
31 	 * The library uses the long descriptor translation table format, which
32 	 * supports 4 KiB pages only.
33 	 */
34 	return size == PAGE_SIZE_4KB;
35 }
36 
xlat_arch_get_max_supported_granule_size(void)37 size_t xlat_arch_get_max_supported_granule_size(void)
38 {
39 	return PAGE_SIZE_4KB;
40 }
41 
42 #if ENABLE_ASSERTIONS
xlat_arch_get_max_supported_pa(void)43 unsigned long long xlat_arch_get_max_supported_pa(void)
44 {
45 	/* Physical address space size for long descriptor format. */
46 	return (1ULL << 40) - 1ULL;
47 }
48 
49 /*
50  * Return minimum virtual address space size supported by the architecture
51  */
xlat_get_min_virt_addr_space_size(void)52 uintptr_t xlat_get_min_virt_addr_space_size(void)
53 {
54 	return MIN_VIRT_ADDR_SPACE_SIZE;
55 }
56 #endif /* ENABLE_ASSERTIONS*/
57 
is_mmu_enabled_ctx(const xlat_ctx_t * ctx)58 bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
59 {
60 	if (ctx->xlat_regime == EL1_EL0_REGIME) {
61 		assert(xlat_arch_current_el() == 1U);
62 		return (read_sctlr() & SCTLR_M_BIT) != 0U;
63 	} else {
64 		assert(ctx->xlat_regime == EL2_REGIME);
65 		assert(xlat_arch_current_el() == 2U);
66 		return (read_hsctlr() & HSCTLR_M_BIT) != 0U;
67 	}
68 }
69 
is_dcache_enabled(void)70 bool is_dcache_enabled(void)
71 {
72 	if (IS_IN_EL2()) {
73 		return (read_hsctlr() & HSCTLR_C_BIT) != 0U;
74 	} else {
75 		return (read_sctlr() & SCTLR_C_BIT) != 0U;
76 	}
77 }
78 
xlat_arch_regime_get_xn_desc(int xlat_regime)79 uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime)
80 {
81 	if (xlat_regime == EL1_EL0_REGIME) {
82 		return UPPER_ATTRS(XN) | UPPER_ATTRS(PXN);
83 	} else {
84 		assert(xlat_regime == EL2_REGIME);
85 		return UPPER_ATTRS(XN);
86 	}
87 }
88 
xlat_arch_tlbi_va(uintptr_t va,int xlat_regime)89 void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime)
90 {
91 	/*
92 	 * Ensure the translation table write has drained into memory before
93 	 * invalidating the TLB entry.
94 	 */
95 	dsbishst();
96 
97 	if (xlat_regime == EL1_EL0_REGIME) {
98 		tlbimvaais(TLBI_ADDR(va));
99 	} else {
100 		assert(xlat_regime == EL2_REGIME);
101 		tlbimvahis(TLBI_ADDR(va));
102 	}
103 }
104 
xlat_arch_tlbi_va_sync(void)105 void xlat_arch_tlbi_va_sync(void)
106 {
107 	/* Invalidate all entries from branch predictors. */
108 	bpiallis();
109 
110 	/*
111 	 * A TLB maintenance instruction can complete at any time after
112 	 * it is issued, but is only guaranteed to be complete after the
113 	 * execution of DSB by the PE that executed the TLB maintenance
114 	 * instruction. After the TLB invalidate instruction is
115 	 * complete, no new memory accesses using the invalidated TLB
116 	 * entries will be observed by any observer of the system
117 	 * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
118 	 * "Ordering and completion of TLB maintenance instructions".
119 	 */
120 	dsbish();
121 
122 	/*
123 	 * The effects of a completed TLB maintenance instruction are
124 	 * only guaranteed to be visible on the PE that executed the
125 	 * instruction after the execution of an ISB instruction by the
126 	 * PE that executed the TLB maintenance instruction.
127 	 */
128 	isb();
129 }
130 
xlat_arch_current_el(void)131 unsigned int xlat_arch_current_el(void)
132 {
133 	if (IS_IN_HYP()) {
134 		return 2U;
135 	} else {
136 		assert(IS_IN_SVC() || IS_IN_MON());
137 		/*
138 		 * If EL3 is in AArch32 mode, all secure PL1 modes (Monitor,
139 		 * System, SVC, Abort, UND, IRQ and FIQ modes) execute at EL3.
140 		 *
141 		 * The PL1&0 translation regime in AArch32 behaves like the
142 		 * EL1&0 regime in AArch64 except for the XN bits, but we set
143 		 * and unset them at the same time, so there's no difference in
144 		 * practice.
145 		 */
146 		return 1U;
147 	}
148 }
149 
150 /*******************************************************************************
151  * Function for enabling the MMU in PL1 or PL2, assuming that the page tables
152  * have already been created.
153  ******************************************************************************/
setup_mmu_cfg(uint64_t * params,unsigned int flags,const uint64_t * base_table,unsigned long long max_pa,uintptr_t max_va,__unused int xlat_regime)154 void setup_mmu_cfg(uint64_t *params, unsigned int flags,
155 		   const uint64_t *base_table, unsigned long long max_pa,
156 		   uintptr_t max_va, __unused int xlat_regime)
157 {
158 	uint64_t mair, ttbr0;
159 	uint32_t ttbcr;
160 
161 	/* Set attributes in the right indices of the MAIR */
162 	mair = MAIR0_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
163 	mair |= MAIR0_ATTR_SET(ATTR_IWBWA_OWBWA_NTR,
164 			ATTR_IWBWA_OWBWA_NTR_INDEX);
165 	mair |= MAIR0_ATTR_SET(ATTR_NON_CACHEABLE,
166 			ATTR_NON_CACHEABLE_INDEX);
167 
168 	/*
169 	 * Configure the control register for stage 1 of the PL1&0 or EL2
170 	 * translation regimes.
171 	 */
172 
173 	/* Use the Long-descriptor translation table format. */
174 	ttbcr = TTBCR_EAE_BIT;
175 
176 	if (xlat_regime == EL1_EL0_REGIME) {
177 		assert(IS_IN_SVC() || IS_IN_MON());
178 		/*
179 		 * Disable translation table walk for addresses that are
180 		 * translated using TTBR1. Therefore, only TTBR0 is used.
181 		 */
182 		ttbcr |= TTBCR_EPD1_BIT;
183 	} else {
184 		assert(xlat_regime == EL2_REGIME);
185 		assert(IS_IN_HYP());
186 
187 		/*
188 		 * Set HTCR bits as well. Set HTTBR table properties
189 		 * as Inner & outer WBWA & shareable.
190 		 */
191 		ttbcr |= HTCR_RES1 |
192 			 HTCR_SH0_INNER_SHAREABLE | HTCR_RGN0_OUTER_WBA |
193 			 HTCR_RGN0_INNER_WBA;
194 	}
195 
196 	/*
197 	 * Limit the input address ranges and memory region sizes translated
198 	 * using TTBR0 to the given virtual address space size, if smaller than
199 	 * 32 bits.
200 	 */
201 	if (max_va != UINT32_MAX) {
202 		uintptr_t virtual_addr_space_size = max_va + 1U;
203 
204 		assert(virtual_addr_space_size >=
205 			xlat_get_min_virt_addr_space_size());
206 		assert(virtual_addr_space_size <=
207 			MAX_VIRT_ADDR_SPACE_SIZE);
208 		assert(IS_POWER_OF_TWO(virtual_addr_space_size));
209 
210 		/*
211 		 * __builtin_ctzll(0) is undefined but here we are guaranteed
212 		 * that virtual_addr_space_size is in the range [1, UINT32_MAX].
213 		 */
214 		int t0sz = 32 - __builtin_ctzll(virtual_addr_space_size);
215 
216 		ttbcr |= (uint32_t) t0sz;
217 	}
218 
219 	/*
220 	 * Set the cacheability and shareability attributes for memory
221 	 * associated with translation table walks using TTBR0.
222 	 */
223 	if ((flags & XLAT_TABLE_NC) != 0U) {
224 		/* Inner & outer non-cacheable non-shareable. */
225 		ttbcr |= TTBCR_SH0_NON_SHAREABLE | TTBCR_RGN0_OUTER_NC |
226 			TTBCR_RGN0_INNER_NC;
227 	} else {
228 		/* Inner & outer WBWA & shareable. */
229 		ttbcr |= TTBCR_SH0_INNER_SHAREABLE | TTBCR_RGN0_OUTER_WBA |
230 			TTBCR_RGN0_INNER_WBA;
231 	}
232 
233 	/* Set TTBR0 bits as well */
234 	ttbr0 = (uint64_t)(uintptr_t) base_table;
235 
236 	if (is_armv8_2_ttcnp_present()) {
237 		/* Enable CnP bit so as to share page tables with all PEs. */
238 		ttbr0 |= TTBR_CNP_BIT;
239 	}
240 
241 	/* Now populate MMU configuration */
242 	params[MMU_CFG_MAIR] = mair;
243 	params[MMU_CFG_TCR] = (uint64_t) ttbcr;
244 	params[MMU_CFG_TTBR0] = ttbr0;
245 }
246