1 /*
2 * Copyright (c) 2018-2019, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <platform_def.h>
8
9 #include <common/debug.h>
10 #include <drivers/arm/css/css_mhu_doorbell.h>
11 #include <drivers/arm/css/scmi.h>
12 #include <drivers/arm/css/sds.h>
13 #include <drivers/arm/gic600_multichip.h>
14 #include <lib/mmio.h>
15 #include <lib/utils.h>
16 #include <plat/arm/common/plat_arm.h>
17
18 #include "n1sdp_def.h"
19
20 /*
21 * Platform information structure stored in SDS.
22 * This structure holds information about platform's DDR
23 * size which will be used to zero out the memory before
24 * enabling the ECC capability as well as information
25 * about multichip setup
26 * - multichip mode
27 * - slave_count
28 * - Local DDR size in GB, DDR memory in master board
29 * - Remote DDR size in GB, DDR memory in slave board
30 */
31 struct n1sdp_plat_info {
32 bool multichip_mode;
33 uint8_t slave_count;
34 uint8_t local_ddr_size;
35 uint8_t remote_ddr_size;
36 } __packed;
37
38 /*
39 * BL33 image information structure stored in SDS.
40 * This structure holds the source & destination addresses and
41 * the size of the BL33 image which will be loaded by BL31.
42 */
43 struct n1sdp_bl33_info {
44 uint32_t bl33_src_addr;
45 uint32_t bl33_dst_addr;
46 uint32_t bl33_size;
47 };
48
49 static scmi_channel_plat_info_t n1sdp_scmi_plat_info = {
50 .scmi_mbx_mem = N1SDP_SCMI_PAYLOAD_BASE,
51 .db_reg_addr = PLAT_CSS_MHU_BASE + CSS_SCMI_MHU_DB_REG_OFF,
52 .db_preserve_mask = 0xfffffffe,
53 .db_modify_mask = 0x1,
54 .ring_doorbell = &mhu_ring_doorbell
55 };
56
57 static struct gic600_multichip_data n1sdp_multichip_data __init = {
58 .rt_owner_base = PLAT_ARM_GICD_BASE,
59 .rt_owner = 0,
60 .chip_count = 1,
61 .chip_addrs = {
62 PLAT_ARM_GICD_BASE >> 16,
63 PLAT_ARM_GICD_BASE >> 16
64 },
65 .spi_ids = {
66 {32, 255},
67 {0, 0}
68 }
69 };
70
71 static uintptr_t n1sdp_multichip_gicr_frames[3] = {
72 PLAT_ARM_GICR_BASE,
73 PLAT_ARM_GICR_BASE + PLAT_ARM_REMOTE_CHIP_OFFSET,
74 0
75 };
76
plat_css_get_scmi_info()77 scmi_channel_plat_info_t *plat_css_get_scmi_info()
78 {
79 return &n1sdp_scmi_plat_info;
80 }
81
plat_arm_psci_override_pm_ops(plat_psci_ops_t * ops)82 const plat_psci_ops_t *plat_arm_psci_override_pm_ops(plat_psci_ops_t *ops)
83 {
84 return css_scmi_override_pm_ops(ops);
85 }
86
87 /*
88 * N1SDP platform supports RDIMMs with ECC capability. To use the ECC
89 * capability, the entire DDR memory space has to be zeroed out before
90 * enabling the ECC bits in DMC620. Zeroing out several gigabytes of
91 * memory from SCP is quite time consuming so the following function
92 * is added to zero out the DDR memory from application processor which is
93 * much faster compared to SCP. BL33 binary cannot be copied to DDR memory
94 * before enabling ECC so copy_bl33 function is added to copy BL33 binary
95 * from IOFPGA-DDR3 memory to main DDR4 memory.
96 */
97
dmc_ecc_setup(uint8_t ddr_size_gb)98 void dmc_ecc_setup(uint8_t ddr_size_gb)
99 {
100 uint64_t dram2_size;
101
102 dram2_size = (ddr_size_gb * 1024UL * 1024UL * 1024UL) -
103 ARM_DRAM1_SIZE;
104
105 INFO("Zeroing DDR memories\n");
106 zero_normalmem((void *)ARM_DRAM1_BASE, ARM_DRAM1_SIZE);
107 flush_dcache_range(ARM_DRAM1_BASE, ARM_DRAM1_SIZE);
108 zero_normalmem((void *)ARM_DRAM2_BASE, dram2_size);
109 flush_dcache_range(ARM_DRAM2_BASE, dram2_size);
110
111 INFO("Enabling ECC on DMCs\n");
112 /* Set DMCs to CONFIG state before writing ERR0CTLR0 register */
113 mmio_write_32(N1SDP_DMC0_MEMC_CMD_REG, N1SDP_DMC_MEMC_CMD_CONFIG);
114 mmio_write_32(N1SDP_DMC1_MEMC_CMD_REG, N1SDP_DMC_MEMC_CMD_CONFIG);
115
116 /* Enable ECC in DMCs */
117 mmio_setbits_32(N1SDP_DMC0_ERR0CTLR0_REG, N1SDP_DMC_ERR0CTLR0_ECC_EN);
118 mmio_setbits_32(N1SDP_DMC1_ERR0CTLR0_REG, N1SDP_DMC_ERR0CTLR0_ECC_EN);
119
120 /* Set DMCs to READY state */
121 mmio_write_32(N1SDP_DMC0_MEMC_CMD_REG, N1SDP_DMC_MEMC_CMD_READY);
122 mmio_write_32(N1SDP_DMC1_MEMC_CMD_REG, N1SDP_DMC_MEMC_CMD_READY);
123 }
124
remote_dmc_ecc_setup(uint8_t remote_ddr_size)125 void remote_dmc_ecc_setup(uint8_t remote_ddr_size)
126 {
127 uint64_t remote_dram2_size;
128
129 remote_dram2_size = (remote_ddr_size * 1024UL * 1024UL * 1024UL) -
130 N1SDP_REMOTE_DRAM1_SIZE;
131 /* multichip setup */
132 INFO("Zeroing remote DDR memories\n");
133 zero_normalmem((void *)N1SDP_REMOTE_DRAM1_BASE,
134 N1SDP_REMOTE_DRAM1_SIZE);
135 flush_dcache_range(N1SDP_REMOTE_DRAM1_BASE, N1SDP_REMOTE_DRAM1_SIZE);
136 zero_normalmem((void *)N1SDP_REMOTE_DRAM2_BASE, remote_dram2_size);
137 flush_dcache_range(N1SDP_REMOTE_DRAM2_BASE, remote_dram2_size);
138
139 INFO("Enabling ECC on remote DMCs\n");
140 /* Set DMCs to CONFIG state before writing ERR0CTLR0 register */
141 mmio_write_32(N1SDP_REMOTE_DMC0_MEMC_CMD_REG,
142 N1SDP_DMC_MEMC_CMD_CONFIG);
143 mmio_write_32(N1SDP_REMOTE_DMC1_MEMC_CMD_REG,
144 N1SDP_DMC_MEMC_CMD_CONFIG);
145
146 /* Enable ECC in DMCs */
147 mmio_setbits_32(N1SDP_REMOTE_DMC0_ERR0CTLR0_REG,
148 N1SDP_DMC_ERR0CTLR0_ECC_EN);
149 mmio_setbits_32(N1SDP_REMOTE_DMC1_ERR0CTLR0_REG,
150 N1SDP_DMC_ERR0CTLR0_ECC_EN);
151
152 /* Set DMCs to READY state */
153 mmio_write_32(N1SDP_REMOTE_DMC0_MEMC_CMD_REG, N1SDP_DMC_MEMC_CMD_READY);
154 mmio_write_32(N1SDP_REMOTE_DMC1_MEMC_CMD_REG, N1SDP_DMC_MEMC_CMD_READY);
155 }
156
copy_bl33(uint32_t src,uint32_t dst,uint32_t size)157 void copy_bl33(uint32_t src, uint32_t dst, uint32_t size)
158 {
159 uint32_t i;
160
161 INFO("Copying BL33 to DDR memory\n");
162 for (i = 0; i < size; i = i + 8)
163 mmio_write_64((dst + i), mmio_read_64(src + i));
164
165 for (i = 0; i < size; i = i + 8) {
166 if (mmio_read_64(src + i) != mmio_read_64(dst + i)) {
167 ERROR("Copy failed!\n");
168 panic();
169 }
170 }
171 }
172
n1sdp_bl31_multichip_setup(void)173 void n1sdp_bl31_multichip_setup(void)
174 {
175 plat_arm_override_gicr_frames(n1sdp_multichip_gicr_frames);
176 gic600_multichip_init(&n1sdp_multichip_data);
177 }
178
bl31_platform_setup(void)179 void bl31_platform_setup(void)
180 {
181 int ret;
182 struct n1sdp_plat_info plat_info;
183 struct n1sdp_bl33_info bl33_info;
184
185 ret = sds_init();
186 if (ret != SDS_OK) {
187 ERROR("SDS initialization failed\n");
188 panic();
189 }
190
191 ret = sds_struct_read(N1SDP_SDS_PLATFORM_INFO_STRUCT_ID,
192 N1SDP_SDS_PLATFORM_INFO_OFFSET,
193 &plat_info,
194 N1SDP_SDS_PLATFORM_INFO_SIZE,
195 SDS_ACCESS_MODE_NON_CACHED);
196 if (ret != SDS_OK) {
197 ERROR("Error getting platform info from SDS\n");
198 panic();
199 }
200 /* Validate plat_info SDS */
201 if ((plat_info.local_ddr_size == 0)
202 || (plat_info.local_ddr_size > N1SDP_MAX_DDR_CAPACITY_GB)
203 || (plat_info.remote_ddr_size > N1SDP_MAX_DDR_CAPACITY_GB)
204 || (plat_info.slave_count > N1SDP_MAX_SLAVE_COUNT)) {
205 ERROR("platform info SDS is corrupted\n");
206 panic();
207 }
208
209 if (plat_info.multichip_mode) {
210 n1sdp_multichip_data.chip_count = plat_info.slave_count + 1;
211 n1sdp_bl31_multichip_setup();
212 }
213 arm_bl31_platform_setup();
214
215 dmc_ecc_setup(plat_info.local_ddr_size);
216
217 /* Check if remote memory is present */
218 if ((plat_info.multichip_mode) && (plat_info.remote_ddr_size != 0))
219 remote_dmc_ecc_setup(plat_info.remote_ddr_size);
220
221 ret = sds_struct_read(N1SDP_SDS_BL33_INFO_STRUCT_ID,
222 N1SDP_SDS_BL33_INFO_OFFSET,
223 &bl33_info,
224 N1SDP_SDS_BL33_INFO_SIZE,
225 SDS_ACCESS_MODE_NON_CACHED);
226 if (ret != SDS_OK) {
227 ERROR("Error getting BL33 info from SDS\n");
228 panic();
229 }
230 copy_bl33(bl33_info.bl33_src_addr,
231 bl33_info.bl33_dst_addr,
232 bl33_info.bl33_size);
233 /*
234 * Pass platform information to BL33. This method is followed as
235 * currently there is no BL1/BL2 involved in boot flow of N1SDP.
236 * When TBBR is implemented for N1SDP, this method should be removed
237 * and platform information should be passed to BL33 using NT_FW_CONFIG
238 * passing mechanism.
239 */
240 mmio_write_32(N1SDP_PLATFORM_INFO_BASE, *(uint32_t *)&plat_info);
241 }
242