• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018 Marvell International Ltd.
3  *
4  * SPDX-License-Identifier:     BSD-3-Clause
5  * https://spdx.org/licenses
6  */
7 
8 #include <common/debug.h>
9 #include <drivers/marvell/ap807_clocks_init.h>
10 #include <drivers/marvell/aro.h>
11 #include <drivers/marvell/ccu.h>
12 #include <drivers/marvell/io_win.h>
13 #include <drivers/marvell/mochi/ap_setup.h>
14 #include <drivers/marvell/mochi/cp110_setup.h>
15 
16 #include <armada_common.h>
17 #include <mv_ddr_if.h>
18 #include <mvebu_def.h>
19 #include <plat_marvell.h>
20 
21 /* Register for skip image use */
22 #define SCRATCH_PAD_REG2		0xF06F00A8
23 #define SCRATCH_PAD_SKIP_VAL		0x01
24 #define NUM_OF_GPIO_PER_REG 32
25 
26 #define MMAP_SAVE_AND_CONFIG		0
27 #define MMAP_RESTORE_SAVED		1
28 
29 /* SAR clock settings */
30 #define MVEBU_AP_GEN_MGMT_BASE		(MVEBU_RFU_BASE + 0x8000)
31 #define MVEBU_AP_SAR_REG_BASE(r)	(MVEBU_AP_GEN_MGMT_BASE + 0x200 +\
32 								((r) << 2))
33 
34 #define SAR_CLOCK_FREQ_MODE_OFFSET	(0)
35 #define SAR_CLOCK_FREQ_MODE_MASK	(0x1f << SAR_CLOCK_FREQ_MODE_OFFSET)
36 #define SAR_PIDI_LOW_SPEED_OFFSET	(20)
37 #define SAR_PIDI_LOW_SPEED_MASK		(1 << SAR_PIDI_LOW_SPEED_OFFSET)
38 #define SAR_PIDI_LOW_SPEED_SHIFT	(15)
39 #define SAR_PIDI_LOW_SPEED_SET		(1 << SAR_PIDI_LOW_SPEED_SHIFT)
40 
41 #define FREQ_MODE_AP_SAR_REG_NUM	(0)
42 #define SAR_CLOCK_FREQ_MODE(v)		(((v) & SAR_CLOCK_FREQ_MODE_MASK) >> \
43 					SAR_CLOCK_FREQ_MODE_OFFSET)
44 
45 #define AVS_I2C_EEPROM_ADDR		0x57	/* EEPROM */
46 #define AVS_EN_CTRL_REG			(MVEBU_AP_GEN_MGMT_BASE + 0x130)
47 #define AVS_ENABLE_OFFSET		(0)
48 #define AVS_SOFT_RESET_OFFSET		(2)
49 #define AVS_TARGET_DELTA_OFFSET		(21)
50 
51 #ifndef MVEBU_SOC_AP807
52 	/* AP806 SVC bits */
53 	#define AVS_LOW_VDD_LIMIT_OFFSET	(4)
54 	#define AVS_HIGH_VDD_LIMIT_OFFSET	(12)
55 	#define AVS_VDD_LOW_LIMIT_MASK	(0xFF << AVS_LOW_VDD_LIMIT_OFFSET)
56 	#define AVS_VDD_HIGH_LIMIT_MASK	(0xFF << AVS_HIGH_VDD_LIMIT_OFFSET)
57 #else
58 	/* AP807 SVC bits */
59 	#define AVS_LOW_VDD_LIMIT_OFFSET	(3)
60 	#define AVS_HIGH_VDD_LIMIT_OFFSET	(13)
61 	#define AVS_VDD_LOW_LIMIT_MASK	(0x3FF << AVS_LOW_VDD_LIMIT_OFFSET)
62 	#define AVS_VDD_HIGH_LIMIT_MASK	(0x3FF << AVS_HIGH_VDD_LIMIT_OFFSET)
63 #endif
64 
65 /* VDD limit is 0.9V for A70x0 @ CPU frequency < 1600MHz */
66 #define AVS_A7K_LOW_CLK_VALUE		((0x80 << AVS_TARGET_DELTA_OFFSET) | \
67 					 (0x1A << AVS_HIGH_VDD_LIMIT_OFFSET) | \
68 					 (0x1A << AVS_LOW_VDD_LIMIT_OFFSET) | \
69 					 (0x1 << AVS_SOFT_RESET_OFFSET) | \
70 					 (0x1 << AVS_ENABLE_OFFSET))
71 /* VDD limit is 1.0V for all A80x0 devices */
72 #define AVS_A8K_CLK_VALUE		((0x80 << AVS_TARGET_DELTA_OFFSET) | \
73 					 (0x24 << AVS_HIGH_VDD_LIMIT_OFFSET) | \
74 					 (0x24 << AVS_LOW_VDD_LIMIT_OFFSET) | \
75 					 (0x1 << AVS_SOFT_RESET_OFFSET) | \
76 					 (0x1 << AVS_ENABLE_OFFSET))
77 /* VDD limit is 0.82V for all A3900 devices
78  * AVS offsets are not the same as in A70x0
79  */
80 #define AVS_A3900_CLK_VALUE		((0x80u << 24) | \
81 					 (0x2c2 << 13) | \
82 					 (0x2c2 << 3) | \
83 					 (0x1 << AVS_SOFT_RESET_OFFSET) | \
84 					 (0x1 << AVS_ENABLE_OFFSET))
85 /* VDD is 0.88V for 2GHz clock */
86 #define AVS_A3900_HIGH_CLK_VALUE	((0x80u << 24) | \
87 					 (0x2f5 << 13) | \
88 					 (0x2f5 << 3) | \
89 					 (0x1 << AVS_SOFT_RESET_OFFSET) | \
90 					 (0x1 << AVS_ENABLE_OFFSET))
91 
92 #define MVEBU_AP_EFUSE_SRV_CTRL_REG	(MVEBU_AP_GEN_MGMT_BASE + 0x8)
93 #define EFUSE_SRV_CTRL_LD_SELECT_OFFS	6
94 #define EFUSE_SRV_CTRL_LD_SEL_USER_MASK	(1 << EFUSE_SRV_CTRL_LD_SELECT_OFFS)
95 
96 
97 /*
98  * - Identification information in the LD-0 eFuse:
99  *	DRO:           LD0[74:65] - Not used by the SW
100  *	Revision:      LD0[78:75] - Not used by the SW
101  *	Bin:           LD0[80:79] - Not used by the SW
102  *	SW Revision:   LD0[115:113]
103  *	Cluster 1 PWR: LD0[193] - if set to 1, power down CPU Cluster-1
104  *				  resulting in 2 CPUs active only (7020)
105  */
106 #define MVEBU_AP_LD_EFUSE_BASE		(MVEBU_AP_GEN_MGMT_BASE + 0xF00)
107 /* Bits [94:63] - 32 data bits total */
108 #define MVEBU_AP_LD0_94_63_EFUSE_OFFS	(MVEBU_AP_LD_EFUSE_BASE + 0x8)
109 /* Bits [125:95] - 31 data bits total, 32nd bit is parity for bits [125:63] */
110 #define MVEBU_AP_LD0_125_95_EFUSE_OFFS	(MVEBU_AP_LD_EFUSE_BASE + 0xC)
111 /* Bits [220:189] - 32 data bits total */
112 #define MVEBU_AP_LD0_220_189_EFUSE_OFFS	(MVEBU_AP_LD_EFUSE_BASE + 0x18)
113 /* Offsets for the above 2 fields combined into single 64-bit value [125:63] */
114 #define EFUSE_AP_LD0_DRO_OFFS		2		/* LD0[74:65] */
115 #define EFUSE_AP_LD0_DRO_MASK		0x3FF
116 #define EFUSE_AP_LD0_REVID_OFFS		12		/* LD0[78:75] */
117 #define EFUSE_AP_LD0_REVID_MASK		0xF
118 #define EFUSE_AP_LD0_BIN_OFFS		16		/* LD0[80:79] */
119 #define EFUSE_AP_LD0_BIN_MASK		0x3
120 #define EFUSE_AP_LD0_SWREV_OFFS		50		/* LD0[115:113] */
121 #define EFUSE_AP_LD0_SWREV_MASK		0x7
122 
123 #ifndef MVEBU_SOC_AP807
124 	/* AP806 AVS work points in the LD0 eFuse
125 	 * SVC1 work point:     LD0[88:81]
126 	 * SVC2 work point:     LD0[96:89]
127 	 * SVC3 work point:     LD0[104:97]
128 	 * SVC4 work point:     LD0[112:105]
129 	 */
130 	#define EFUSE_AP_LD0_SVC1_OFFS		18	/* LD0[88:81] */
131 	#define EFUSE_AP_LD0_SVC2_OFFS		26	/* LD0[96:89] */
132 	#define EFUSE_AP_LD0_SVC3_OFFS		34	/* LD0[104:97] */
133 	#define EFUSE_AP_LD0_WP_MASK		0xFF
134 #else
135 	/* AP807 AVS work points in the LD0 eFuse
136 	 * SVC1 work point:     LD0[91:81]
137 	 * SVC2 work point:     LD0[102:92]
138 	 * SVC3 work point:     LD0[113:103]
139 	 */
140 	#define EFUSE_AP_LD0_SVC1_OFFS		17	/* LD0[91:81] */
141 	#define EFUSE_AP_LD0_SVC2_OFFS		28	/* LD0[102:92] */
142 	#define EFUSE_AP_LD0_SVC3_OFFS		39	/* LD0[113:103] */
143 	#define EFUSE_AP_LD0_WP_MASK		0x3FF
144 #endif
145 
146 #define EFUSE_AP_LD0_SVC4_OFFS			42	/* LD0[112:105] */
147 
148 #define EFUSE_AP_LD0_CLUSTER_DOWN_OFFS		4
149 
150 #if MARVELL_SVC_TEST
151 #define MVEBU_CP_MPP_CTRL37_OFFS	20
152 #define MVEBU_CP_MPP_CTRL38_OFFS	24
153 #define MVEBU_CP_MPP_I2C_FUNC		2
154 #define MVEBU_MPP_CTRL_MASK		0xf
155 #endif
156 
157 /* Return the AP revision of the chip */
ble_get_ap_type(void)158 static unsigned int ble_get_ap_type(void)
159 {
160 	unsigned int chip_rev_id;
161 
162 	chip_rev_id = mmio_read_32(MVEBU_CSS_GWD_CTRL_IIDR2_REG);
163 	chip_rev_id = ((chip_rev_id & GWD_IIDR2_CHIP_ID_MASK) >>
164 			GWD_IIDR2_CHIP_ID_OFFSET);
165 
166 	return chip_rev_id;
167 }
168 
169 /******************************************************************************
170  * The routine allows to save the CCU and IO windows configuration during DRAM
171  * setup and restore them afterwards before exiting the BLE stage.
172  * Such window configuration is required since not all default settings coming
173  * from the HW and the BootROM allow access to peripherals connected to
174  * all available CPn components.
175  * For instance, when the boot device is located on CP0, the IO window to CP1
176  * is not opened automatically by the HW and if the DRAM SPD is located on CP1
177  * i2c channel, it cannot be read at BLE stage.
178  * Therefore the DRAM init procedure have to provide access to all available
179  * CPn peripherals during the BLE stage by setting the CCU IO window to all
180  * CPnph addresses and by enabling the IO windows accordingly.
181  * Additionally this function configures the CCU GCR to DRAM, which allows
182  * usage or more than 4GB DRAM as it configured by the default CCU DRAM window.
183  *
184  * IN:
185  *	MMAP_SAVE_AND_CONFIG	- save the existing configuration and update it
186  *	MMAP_RESTORE_SAVED	- restore saved configuration
187  * OUT:
188  *	NONE
189  ****************************************************************************
190  */
ble_plat_mmap_config(int restore)191 static void ble_plat_mmap_config(int restore)
192 {
193 	if (restore == MMAP_RESTORE_SAVED) {
194 		/* Restore all orig. settings that were modified by BLE stage */
195 		ccu_restore_win_all(MVEBU_AP0);
196 		/* Restore CCU */
197 		iow_restore_win_all(MVEBU_AP0);
198 		return;
199 	}
200 
201 	/* Store original values */
202 	ccu_save_win_all(MVEBU_AP0);
203 	/* Save CCU */
204 	iow_save_win_all(MVEBU_AP0);
205 
206 	init_ccu(MVEBU_AP0);
207 	/* The configuration saved, now all the changes can be done */
208 	init_io_win(MVEBU_AP0);
209 }
210 
211 /****************************************************************************
212  * Setup Adaptive Voltage Switching - this is required for some platforms
213  ****************************************************************************
214  */
215 #if !MARVELL_SVC_TEST
ble_plat_avs_config(void)216 static void ble_plat_avs_config(void)
217 {
218 	uint32_t freq_mode, device_id;
219 	uint32_t avs_val = 0;
220 
221 	freq_mode =
222 		SAR_CLOCK_FREQ_MODE(mmio_read_32(MVEBU_AP_SAR_REG_BASE(
223 						 FREQ_MODE_AP_SAR_REG_NUM)));
224 	/* Check which SoC is running and act accordingly */
225 	if (ble_get_ap_type() == CHIP_ID_AP807) {
226 		/* Increase CPU voltage for higher CPU clock */
227 		if (freq_mode == CPU_2000_DDR_1200_RCLK_1200)
228 			avs_val = AVS_A3900_HIGH_CLK_VALUE;
229 		else
230 			avs_val = AVS_A3900_CLK_VALUE;
231 	} else {
232 		/* Check which SoC is running and act accordingly */
233 		device_id = cp110_device_id_get(MVEBU_CP_REGS_BASE(0));
234 		switch (device_id) {
235 		case MVEBU_80X0_DEV_ID:
236 		case MVEBU_80X0_CP115_DEV_ID:
237 			/* Always fix the default AVS value on A80x0 */
238 			avs_val = AVS_A8K_CLK_VALUE;
239 			break;
240 		case MVEBU_70X0_DEV_ID:
241 		case MVEBU_70X0_CP115_DEV_ID:
242 			/* Fix AVS for CPU clocks lower than 1600MHz on A70x0 */
243 			if ((freq_mode > CPU_1600_DDR_900_RCLK_900_2) &&
244 			    (freq_mode < CPU_DDR_RCLK_INVALID))
245 				avs_val = AVS_A7K_LOW_CLK_VALUE;
246 			break;
247 		default:
248 			ERROR("Unsupported Device ID 0x%x\n", device_id);
249 			return;
250 		}
251 	}
252 
253 	if (avs_val) {
254 		VERBOSE("AVS: Setting AVS CTRL to 0x%x\n", avs_val);
255 		mmio_write_32(AVS_EN_CTRL_REG, avs_val);
256 	}
257 }
258 #endif
259 /******************************************************************************
260  * Update or override current AVS work point value using data stored in EEPROM
261  * This is only required by QA/validation flows and activated by
262  * MARVELL_SVC_TEST flag.
263  *
264  * The function is expected to be called twice.
265  *
266  * First time with AVS value of 0 for testing if the EEPROM requests completely
267  * override the AVS value and bypass the eFuse test
268  *
269  * Second time - with non-zero AVS value obtained from eFuses as an input.
270  * In this case the EEPROM may contain AVS correction value (either positive
271  * or negative) that is added to the input AVS value and returned back for
272  * further processing.
273  ******************************************************************************
274  */
avs_update_from_eeprom(uint32_t avs_workpoint)275 static uint32_t avs_update_from_eeprom(uint32_t avs_workpoint)
276 {
277 	uint32_t new_wp = avs_workpoint;
278 #if MARVELL_SVC_TEST
279 	/* ---------------------------------------------------------------------
280 	 * EEPROM  |  Data description (avs_step)
281 	 * address |
282 	 * ---------------------------------------------------------------------
283 	 * 0x120   | AVS workpoint correction value
284 	 *         | if not 0 and not 0xff, correct the AVS taken from eFuse
285 	 *         | by the number of steps indicated by bit[6:0]
286 	 *         | bit[7] defines correction direction.
287 	 *         | If bit[7]=1, add the value from bit[6:0] to AVS workpoint,
288 	 *         | othervise substruct this value from AVS workpoint.
289 	 * ---------------------------------------------------------------------
290 	 * 0x121   | AVS workpoint override value
291 	 *         | Override the AVS workpoint with the value stored in this
292 	 *         | byte. When running on AP806, the AVS workpoint is 7 bits
293 	 *         | wide and override value is valid when bit[6:0] holds
294 	 *         | value greater than zero and smaller than 0x33.
295 	 *         | When running on AP807, the AVS workpoint is 10 bits wide.
296 	 *         | Additional 2 MSB bits are supplied by EEPROM byte 0x122.
297 	 *         | AVS override value is valid when byte @ 0x121 and bit[1:0]
298 	 *         | of byte @ 0x122 combined have non-zero value.
299 	 * ---------------------------------------------------------------------
300 	 * 0x122   | Extended AVS workpoint override value
301 	 *         | Valid only for AP807 platforms and must be less than 0x4
302 	 * ---------------------------------------------------------------------
303 	 */
304 	static uint8_t  avs_step[3] = {0};
305 	uintptr_t reg;
306 	uint32_t val;
307 	unsigned int ap_type = ble_get_ap_type();
308 
309 	/* Always happens on second call to this function */
310 	if (avs_workpoint != 0) {
311 		/* Get correction steps from the EEPROM */
312 		if ((avs_step[0] != 0) && (avs_step[0] != 0xff)) {
313 			NOTICE("AVS request to step %s by 0x%x from old 0x%x\n",
314 				avs_step[0] & 0x80 ? "DOWN" : "UP",
315 				avs_step[0] & 0x7f, new_wp);
316 			if (avs_step[0] & 0x80)
317 				new_wp -= avs_step[0] & 0x7f;
318 			else
319 				new_wp += avs_step[0] & 0x7f;
320 		}
321 
322 		return new_wp;
323 	}
324 
325 	/* AVS values are located in EEPROM
326 	 * at CP0 i2c bus #0, device 0x57 offset 0x120
327 	 * The SDA and SCK pins of CP0 i2c-0: MPP[38:37], i2c function 0x2.
328 	 */
329 	reg = MVEBU_CP_MPP_REGS(0, 4);
330 	val = mmio_read_32(reg);
331 	val &= ~((MVEBU_MPP_CTRL_MASK << MVEBU_CP_MPP_CTRL37_OFFS) |
332 		 (MVEBU_MPP_CTRL_MASK << MVEBU_CP_MPP_CTRL38_OFFS));
333 	val |= (MVEBU_CP_MPP_I2C_FUNC << MVEBU_CP_MPP_CTRL37_OFFS) |
334 		(MVEBU_CP_MPP_I2C_FUNC << MVEBU_CP_MPP_CTRL38_OFFS);
335 	mmio_write_32(reg, val);
336 
337 	/* Init CP0 i2c-0 */
338 	i2c_init((void *)(MVEBU_CP0_I2C_BASE));
339 
340 	/* Read EEPROM only once at the fist call! */
341 	i2c_read(AVS_I2C_EEPROM_ADDR, 0x120, 2, avs_step, 3);
342 	NOTICE("== SVC test build ==\n");
343 	NOTICE("EEPROM holds values 0x%x, 0x%x and 0x%x\n",
344 		avs_step[0], avs_step[1], avs_step[2]);
345 
346 	/* Override the AVS value? */
347 	if ((ap_type != CHIP_ID_AP807) && (avs_step[1] < 0x33)) {
348 		/* AP806 - AVS is 7 bits */
349 		new_wp = avs_step[1];
350 
351 	} else if (ap_type == CHIP_ID_AP807 && (avs_step[2] < 0x4)) {
352 		/* AP807 - AVS is 10 bits */
353 		new_wp = avs_step[2];
354 		new_wp <<= 8;
355 		new_wp |= avs_step[1];
356 	}
357 
358 	if (new_wp == 0)
359 		NOTICE("Ignore BAD AVS Override value in EEPROM!\n");
360 	else
361 		NOTICE("Override AVS by EEPROM value 0x%x\n", new_wp);
362 #endif /* MARVELL_SVC_TEST */
363 	return new_wp;
364 }
365 
366 /****************************************************************************
367  * SVC flow - v0.10
368  * The feature is intended to configure AVS value according to eFuse values
369  * that are burned individually for each SoC during the test process.
370  * Primary AVS value is stored in HD efuse and processed on power on
371  * by the HW engine
372  * Secondary AVS value is located in LD efuse and contains 4 work points for
373  * various CPU frequencies.
374  * The Secondary AVS value is only taken into account if the SW Revision stored
375  * in the efuse is greater than 0 and the CPU is running in a certain speed.
376  ****************************************************************************
377  */
ble_plat_svc_config(void)378 static void ble_plat_svc_config(void)
379 {
380 	uint32_t reg_val, avs_workpoint, freq_pidi_mode;
381 	uint64_t efuse;
382 	uint32_t device_id, single_cluster;
383 	uint16_t  svc[4], perr[4], i, sw_ver;
384 	unsigned int ap_type;
385 
386 	/* Set access to LD0 */
387 	avs_workpoint = avs_update_from_eeprom(0);
388 	if (avs_workpoint)
389 		goto set_aws_wp;
390 
391 	/* Set access to LD0 */
392 	reg_val = mmio_read_32(MVEBU_AP_EFUSE_SRV_CTRL_REG);
393 	reg_val &= ~EFUSE_SRV_CTRL_LD_SELECT_OFFS;
394 	mmio_write_32(MVEBU_AP_EFUSE_SRV_CTRL_REG, reg_val);
395 
396 	/* Obtain the value of LD0[125:63] */
397 	efuse = mmio_read_32(MVEBU_AP_LD0_125_95_EFUSE_OFFS);
398 	efuse <<= 32;
399 	efuse |= mmio_read_32(MVEBU_AP_LD0_94_63_EFUSE_OFFS);
400 
401 	/* SW Revision:
402 	 * Starting from SW revision 1 the SVC flow is supported.
403 	 * SW version 0 (efuse not programmed) should follow the
404 	 * regular AVS update flow.
405 	 */
406 	sw_ver = (efuse >> EFUSE_AP_LD0_SWREV_OFFS) & EFUSE_AP_LD0_SWREV_MASK;
407 	if (sw_ver < 1) {
408 		NOTICE("SVC: SW Revision 0x%x. SVC is not supported\n", sw_ver);
409 #if MARVELL_SVC_TEST
410 		NOTICE("SVC_TEST: AVS bypassed\n");
411 
412 #else
413 		ble_plat_avs_config();
414 #endif
415 		return;
416 	}
417 
418 	/* Frequency mode from SAR */
419 	freq_pidi_mode = SAR_CLOCK_FREQ_MODE(
420 				mmio_read_32(
421 					MVEBU_AP_SAR_REG_BASE(
422 						FREQ_MODE_AP_SAR_REG_NUM)));
423 
424 	/* Decode all SVC work points */
425 	svc[0] = (efuse >> EFUSE_AP_LD0_SVC1_OFFS) & EFUSE_AP_LD0_WP_MASK;
426 	svc[1] = (efuse >> EFUSE_AP_LD0_SVC2_OFFS) & EFUSE_AP_LD0_WP_MASK;
427 	svc[2] = (efuse >> EFUSE_AP_LD0_SVC3_OFFS) & EFUSE_AP_LD0_WP_MASK;
428 
429 	/* Fetch AP type to distinguish between AP806 and AP807 */
430 	ap_type = ble_get_ap_type();
431 
432 	if (ap_type != CHIP_ID_AP807) {
433 		svc[3] = (efuse >> EFUSE_AP_LD0_SVC4_OFFS)
434 			 & EFUSE_AP_LD0_WP_MASK;
435 		INFO("SVC: Efuse WP: [0]=0x%x, [1]=0x%x, [2]=0x%x, [3]=0x%x\n",
436 		     svc[0], svc[1], svc[2], svc[3]);
437 	} else {
438 		INFO("SVC: Efuse WP: [0]=0x%x, [1]=0x%x, [2]=0x%x\n",
439 		     svc[0], svc[1], svc[2]);
440 	}
441 
442 	/* Validate parity of SVC workpoint values */
443 	for (i = 0; i < 4; i++) {
444 		uint8_t parity, bit;
445 
446 		perr[i] = 0;
447 
448 		for (bit = 1, parity = svc[i] & 1; bit < 7; bit++)
449 			parity ^= (svc[i] >> bit) & 1;
450 
451 		/* Starting from SW version 2, the parity check is mandatory */
452 		if ((sw_ver > 1) && (parity != ((svc[i] >> 7) & 1)))
453 			perr[i] = 1; /* register the error */
454 	}
455 
456 	single_cluster = mmio_read_32(MVEBU_AP_LD0_220_189_EFUSE_OFFS);
457 	single_cluster = (single_cluster >> EFUSE_AP_LD0_CLUSTER_DOWN_OFFS) & 1;
458 
459 	device_id = cp110_device_id_get(MVEBU_CP_REGS_BASE(0));
460 	if (device_id == MVEBU_80X0_DEV_ID ||
461 	    device_id == MVEBU_80X0_CP115_DEV_ID) {
462 		/* A8040/A8020 */
463 		NOTICE("SVC: DEV ID: %s, FREQ Mode: 0x%x\n",
464 			single_cluster == 0 ? "8040" : "8020", freq_pidi_mode);
465 		switch (freq_pidi_mode) {
466 		case CPU_1800_DDR_1200_RCLK_1200:
467 		case CPU_1800_DDR_1050_RCLK_1050:
468 			if (perr[1])
469 				goto perror;
470 			avs_workpoint = svc[1];
471 			break;
472 		case CPU_1600_DDR_1050_RCLK_1050:
473 		case CPU_1600_DDR_900_RCLK_900_2:
474 			if (perr[2])
475 				goto perror;
476 			avs_workpoint = svc[2];
477 			break;
478 		case CPU_1300_DDR_800_RCLK_800:
479 		case CPU_1300_DDR_650_RCLK_650:
480 			if (perr[3])
481 				goto perror;
482 			avs_workpoint = svc[3];
483 			break;
484 		case CPU_2000_DDR_1200_RCLK_1200:
485 		case CPU_2000_DDR_1050_RCLK_1050:
486 		default:
487 			if (perr[0])
488 				goto perror;
489 			avs_workpoint = svc[0];
490 			break;
491 		}
492 	} else if (device_id == MVEBU_70X0_DEV_ID ||
493 		   device_id == MVEBU_70X0_CP115_DEV_ID) {
494 		/* A7040/A7020/A6040 */
495 		NOTICE("SVC: DEV ID: %s, FREQ Mode: 0x%x\n",
496 			single_cluster == 0 ? "7040" : "7020", freq_pidi_mode);
497 		switch (freq_pidi_mode) {
498 		case CPU_1400_DDR_800_RCLK_800:
499 			if (single_cluster) {/* 7020 */
500 				if (perr[1])
501 					goto perror;
502 				avs_workpoint = svc[1];
503 			} else {
504 				if (perr[0])
505 					goto perror;
506 				avs_workpoint = svc[0];
507 			}
508 			break;
509 		case CPU_1200_DDR_800_RCLK_800:
510 			if (single_cluster) {/* 7020 */
511 				if (perr[2])
512 					goto perror;
513 				avs_workpoint = svc[2];
514 			} else {
515 				if (perr[1])
516 					goto perror;
517 				avs_workpoint = svc[1];
518 			}
519 			break;
520 		case CPU_800_DDR_800_RCLK_800:
521 		case CPU_1000_DDR_800_RCLK_800:
522 			if (single_cluster) {/* 7020 */
523 				if (perr[3])
524 					goto perror;
525 				avs_workpoint = svc[3];
526 			} else {
527 				if (perr[2])
528 					goto perror;
529 				avs_workpoint = svc[2];
530 			}
531 			break;
532 		case CPU_600_DDR_800_RCLK_800:
533 			if (perr[3])
534 				goto perror;
535 			avs_workpoint = svc[3]; /* Same for 6040 and 7020 */
536 			break;
537 		case CPU_1600_DDR_800_RCLK_800: /* 7020 only */
538 		default:
539 			if (single_cluster) {/* 7020 */
540 				if (perr[0])
541 					goto perror;
542 				avs_workpoint = svc[0];
543 			} else
544 				avs_workpoint = 0;
545 			break;
546 		}
547 	} else if (device_id == MVEBU_3900_DEV_ID) {
548 		NOTICE("SVC: DEV ID: %s, FREQ Mode: 0x%x\n",
549 		       "3900", freq_pidi_mode);
550 		switch (freq_pidi_mode) {
551 		case CPU_1600_DDR_1200_RCLK_1200:
552 			if (perr[0])
553 				goto perror;
554 			avs_workpoint = svc[0];
555 			break;
556 		case CPU_1300_DDR_800_RCLK_800:
557 			if (perr[1])
558 				goto perror;
559 			avs_workpoint = svc[1];
560 			break;
561 		default:
562 			if (perr[0])
563 				goto perror;
564 			avs_workpoint = svc[0];
565 			break;
566 		}
567 	} else {
568 		ERROR("SVC: Unsupported Device ID 0x%x\n", device_id);
569 		return;
570 	}
571 
572 	/* Set AVS control if needed */
573 	if (avs_workpoint == 0) {
574 		ERROR("SVC: AVS work point not changed\n");
575 		return;
576 	}
577 
578 	/* Remove parity bit */
579 	if (ap_type != CHIP_ID_AP807)
580 		avs_workpoint &= 0x7F;
581 
582 	/* Update WP from EEPROM if needed */
583 	avs_workpoint = avs_update_from_eeprom(avs_workpoint);
584 
585 set_aws_wp:
586 	reg_val  = mmio_read_32(AVS_EN_CTRL_REG);
587 	NOTICE("SVC: AVS work point changed from 0x%x to 0x%x\n",
588 		(reg_val & AVS_VDD_LOW_LIMIT_MASK) >> AVS_LOW_VDD_LIMIT_OFFSET,
589 		avs_workpoint);
590 	reg_val &= ~(AVS_VDD_LOW_LIMIT_MASK | AVS_VDD_HIGH_LIMIT_MASK);
591 	reg_val |= 0x1 << AVS_ENABLE_OFFSET;
592 	reg_val |= avs_workpoint << AVS_HIGH_VDD_LIMIT_OFFSET;
593 	reg_val |= avs_workpoint << AVS_LOW_VDD_LIMIT_OFFSET;
594 	mmio_write_32(AVS_EN_CTRL_REG, reg_val);
595 	return;
596 
597 perror:
598 	ERROR("Failed SVC WP[%d] parity check!\n", i);
599 	ERROR("Ignoring the WP values\n");
600 }
601 
602 #if PLAT_RECOVERY_IMAGE_ENABLE
ble_skip_image_i2c(struct skip_image * skip_im)603 static int ble_skip_image_i2c(struct skip_image *skip_im)
604 {
605 	ERROR("skipping image using i2c is not supported\n");
606 	/* not supported */
607 	return 0;
608 }
609 
ble_skip_image_other(struct skip_image * skip_im)610 static int ble_skip_image_other(struct skip_image *skip_im)
611 {
612 	ERROR("implementation missing for skip image request\n");
613 	/* not supported, make your own implementation */
614 	return 0;
615 }
616 
ble_skip_image_gpio(struct skip_image * skip_im)617 static int ble_skip_image_gpio(struct skip_image *skip_im)
618 {
619 	unsigned int val;
620 	unsigned int mpp_address = 0;
621 	unsigned int offset = 0;
622 
623 	switch (skip_im->info.test.cp_ap) {
624 	case(CP):
625 		mpp_address = MVEBU_CP_GPIO_DATA_IN(skip_im->info.test.cp_index,
626 						    skip_im->info.gpio.num);
627 		if (skip_im->info.gpio.num > NUM_OF_GPIO_PER_REG)
628 			offset = skip_im->info.gpio.num - NUM_OF_GPIO_PER_REG;
629 		else
630 			offset = skip_im->info.gpio.num;
631 		break;
632 	case(AP):
633 		mpp_address = MVEBU_AP_GPIO_DATA_IN;
634 		offset = skip_im->info.gpio.num;
635 		break;
636 	}
637 
638 	val = mmio_read_32(mpp_address);
639 	val &= (1 << offset);
640 	if ((!val && skip_im->info.gpio.button_state == HIGH) ||
641 	    (val && skip_im->info.gpio.button_state == LOW)) {
642 		mmio_write_32(SCRATCH_PAD_REG2, SCRATCH_PAD_SKIP_VAL);
643 		return 1;
644 	}
645 
646 	return 0;
647 }
648 
649 /*
650  * This function checks if there's a skip image request:
651  * return values:
652  * 1: (true) images request been made.
653  * 0: (false) no image request been made.
654  */
ble_skip_current_image(void)655 static int  ble_skip_current_image(void)
656 {
657 	struct skip_image *skip_im;
658 
659 	/*fetching skip image info*/
660 	skip_im = (struct skip_image *)plat_marvell_get_skip_image_data();
661 
662 	if (skip_im == NULL)
663 		return 0;
664 
665 	/* check if skipping image request has already been made */
666 	if (mmio_read_32(SCRATCH_PAD_REG2) == SCRATCH_PAD_SKIP_VAL)
667 		return 0;
668 
669 	switch (skip_im->detection_method) {
670 	case GPIO:
671 		return ble_skip_image_gpio(skip_im);
672 	case I2C:
673 		return ble_skip_image_i2c(skip_im);
674 	case USER_DEFINED:
675 		return ble_skip_image_other(skip_im);
676 	}
677 
678 	return 0;
679 }
680 #endif
681 
682 
ble_plat_setup(int * skip)683 int ble_plat_setup(int *skip)
684 {
685 	int ret;
686 	unsigned int freq_mode;
687 
688 	/* Power down unused CPUs */
689 	plat_marvell_early_cpu_powerdown();
690 
691 	/*
692 	 * Save the current CCU configuration and make required changes:
693 	 * - Allow access to DRAM larger than 4GB
694 	 * - Open memory access to all CPn peripherals
695 	 */
696 	ble_plat_mmap_config(MMAP_SAVE_AND_CONFIG);
697 
698 #if PLAT_RECOVERY_IMAGE_ENABLE
699 	/* Check if there's a skip request to bootRom recovery Image */
700 	if (ble_skip_current_image()) {
701 		/* close memory access to all CPn peripherals. */
702 		ble_plat_mmap_config(MMAP_RESTORE_SAVED);
703 		*skip = 1;
704 		return 0;
705 	}
706 #endif
707 	/* Do required CP-110 setups for BLE stage */
708 	cp110_ble_init(MVEBU_CP_REGS_BASE(0));
709 
710 	/* Setup AVS */
711 	ble_plat_svc_config();
712 
713 	/* read clk option from sampled-at-reset register */
714 	freq_mode =
715 		SAR_CLOCK_FREQ_MODE(mmio_read_32(MVEBU_AP_SAR_REG_BASE(
716 						 FREQ_MODE_AP_SAR_REG_NUM)));
717 
718 	/* work with PLL clock driver in AP807 */
719 	if (ble_get_ap_type() == CHIP_ID_AP807)
720 		ap807_clocks_init(freq_mode);
721 
722 	/* Do required AP setups for BLE stage */
723 	ap_ble_init();
724 
725 	/* Update DRAM topology (scan DIMM SPDs) */
726 	plat_marvell_dram_update_topology();
727 
728 	/* Kick it in */
729 	ret = dram_init();
730 
731 	/* Restore the original CCU configuration before exit from BLE */
732 	ble_plat_mmap_config(MMAP_RESTORE_SAVED);
733 
734 	return ret;
735 }
736