• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# This file contains test vectors for whether B is a Miller-Rabin composite
2# witness for W. W must be odd and B must satisfy 1 <= B <= W-1.
3#
4# The following Python function may be used to check values.
5#
6#  def is_miller_rabin_witness(w, b):
7#      # Variable names taken from FIPS 186-4 C.3.1 but the algorithm skips a
8#      # couple of optimizations in the FIPS formulation.
9#      m = w - 1
10#      a = 0
11#      while m&1 == 0:
12#          a += 1
13#          m //= 2
14#      # b is a composite witness for w iff the following are true:
15#      # - b^m != 1 (mod w)
16#      # - b^(m*2^j) != -1 (mod w), for 0 <= j < a
17#      z = pow(b, m, w)
18#      if z == 1:
19#         # b^m = 1 (mod w)
20#         return False
21#      for j in range(a):
22#         if z == w-1:
23#             # b^(m*2^j) = -1 (mod w)
24#             return False
25#         z = (z * z) % w
26#      # At this point, z is b^(w-1) (mod w). If z is not 1, w has failed the
27#      # Fermat test and is composite. If z is 1, the value of z immediately
28#      # before it became 1 is a non-trivial root of unity and w is composite.
29#      return True
30
31# Exhaustively test a small prime.
32
33Result = PossiblyPrime
34W = 7
35B = 1
36
37Result = PossiblyPrime
38W = 7
39B = 2
40
41Result = PossiblyPrime
42W = 7
43B = 3
44
45Result = PossiblyPrime
46W = 7
47B = 4
48
49Result = PossiblyPrime
50W = 7
51B = 5
52
53Result = PossiblyPrime
54W = 7
55B = 6
56
57
58# Random large inputs which try to cover a few cases. The nontrivial square root
59# case appears to be difficult to hit randomly.
60
61# b^m = w-1
62Result = PossiblyPrime
63W = d6b4ffc7cf70b2a2fc5d6023015875504d40e3dcce7c2e6b762c3de7bb806a5074144e7054198dabf53d23108679ccc541d5a99efeb1d1abaf89e0dbcead2a8b
64B = fabbafdbec6494ddb5ea4bf458536e87082369b0e53a200ed413f3e64b2fddc7c57c565710fbe73fae5b188fce97d8dcca74c2b5d90906c96d3c2c358a735cd
65
66# b^m = w-1
67Result = PossiblyPrime
68W = 52cc61c42b341ad56dc11495e7cb2fe31e506b9e99522efbf44cd7c28468d3833c5e360f3c77b0aa43c0495c4e14665ab0d7cee9294c722f0de47d4401828401
69B = 3bdc9639c0fc2e77ab48d46e0b4ac6529c11c900e8fe4d82d75767c0556feb23d3f42d4924d16876a743feb386b7b84c7fd16a6c252f662faf0024d19972e62f
70
71# b^m = w-1
72Result = PossiblyPrime
73W = cff9897aa7dce0f2afad262b2de57d301305de717f3539c537c4ce062f8cb70df13fbc1eb4a3b9f0958a8810d1ca9042b4f23334b285a15fee3fc66498761d4b
74B = 9ceb43132fddf9ee4104ea1cb3eb2253c1d7f803f05f0305de9e31a17dd75832f47b8bf189a9b7ca0905f2a7470d9c6349080f481ff1708696fa12d972e7d7ba
75
76# Some b^(m*2^j) = w-1
77Result = PossiblyPrime
78W = 67d1825dad5344170e65247a87aef1634a1b32bdc22f2f04d9d2959767bb5a27610fba55cd607e0f9fdd9fbb0f7f98e40d5e1eb2f52318fb5be4dbfd30d38861
79B = 260fb14724ff80984736859d8755ee98b25bcb56db9fde1db001a1e1273374034c5b75fd60b3710c7a08ce7d390776f010f384d4e32943cf0c477497d53e9e05
80
81# Some b^(m*2^j) = w-1
82Result = PossiblyPrime
83W = ad0bc85b58aaa204177aa9431a40929beb1cbea2dd6f66a25cc54600013213b225ba881805661df43f4208965ada7aacc8095d07d3cbef1a7bbfaae8b745f731
84B = 3d9310f20e9c80269fa6830c7e1a6f02fc5c58646001a9ef6b8b3e496602ff22c3dcb2ddb6a221723fc1722ce237fb46f7a7bb2945e415c8839b15a972f076c9
85
86# Some b^(m*2^j) = w-1
87Result = PossiblyPrime
88W = b25c917f55f6c7b596921daba919f35039e5d805119c1587e99849dd7104460c86214f162a6f17aea847bc7f3859e59f2991d457059511972ef373d4bc75e309
89B = a1f10b261dee84619b0423201d46af19eef9ec0612cf947c4d5c36c0c4b28207f75967e69452eabad0a5dcd28f27f7a8a7ed9c8b3e5026c6e0ba5634d94c2d44
90
91# b^m = 1
92Result = PossiblyPrime
93W = d3eeb0eff05b6992e9fa61b02755e155f4aae28c6e45ddb874edd86acdd2d83d18a20e0e00d8b8bc94b92d14fc3f41ced6ababe8ac98c7730c075dbe0f699369
94B = 6b7717269c6225203681a1cacec87cacd83003ec6e9e3f04effcc4f86634770c0860e1f2770b8f303719a44949664a1094205a99d95a0856758fed66d690105e
95
96# b^m = 1
97Result = PossiblyPrime
98W = 64561b8d9aa50340c3a01ccb3e6e17f5023513661c012be288f3900a3ca76890e67290b9560fa1d480f9d2aacccca581b5690636665f243fa13aff5d0bff12d3
99B = 1f5ff70d3d60671ebc5fbfca731898a04438053dbc3c841e6335f487e457d92d9efb5d506d5bef6872d58d12b9a41c950bfc38d12ed977c90eacdd6535b811a0
100
101# b^m = 1
102Result = PossiblyPrime
103W = 69c63fbf44df21b0ed0ee929a740c12d1f3f064da0dcd9d509f31fa45fa27d1a759ab5a9f6f1040d7ee90a0b1e68f779273c41ea1c1198fd547ff6bd70c7e787
104B = 5f7996a9bbfd8fd88e472220b70077bfdacdd63d88885134431f024c2acb7126827b174eb093eb5313f07bb5461de9b0feb7d77ca2c39c2a323a150f33ea525f
105
106# End of iteration
107Result = Composite
108W = 28cc3e08c44571c6dcb98a9ab8b4f3e2b16e1f884997d94a3188bcbb7f1b7cdaecdae8329c013ec8f75dc00004da0039943e4262cd080b16a42910102e00dddb
109B = 512061ab1c69931c2fa0bb89d8d09f3c9209230bf927ddd6fb6a72075f967ed3c4dbb5f437bf4d31ca7344782b22011ad56609dc19aed65319bababfc13dd7
110
111# End of iteration
112Result = Composite
113W = 4eeb7b4d371c45fe8586fee3b1efd792176b70f6cc2698dfa1dd028366626febe0199c3c5f77a5c3cad0057a04767383051d41965255d03681b2a37edad34a9b
114B = 4afc2e85f84017b3fd6967a227eb74c8297b40ea02733d9513bff9b3f01081963f25872f4254afc4e9321eea35b2a1e42eadb186fcc84f2f30f4a994350b93b8
115
116# End of iteration
117Result = Composite
118W = 8e35a959555dd2eb66c65cee3c264071d20671f159e1f9896f1d0ceb041905fcf053eacc189de317c3ee6f93901223cbf30d5b7ddbbdab981790e2f6397e6803
119B = 44c0153759309ec4e5b1e59d57c1b126545ef7ea302b6e43561df4d16068b922389d6924f01c945d9080d1f93a0732599bdedae72d6d590839dc0884dd860441
120
121
122# 0x6c1 = 1729 = 7 * 13 * 19 is a Fermat pseudoprime.
123
124# Found non-trivial square root
125Result = Composite
126W = 6c1
127B = b8
128
129# End of iteration
130Result = Composite
131W = 6c1
132B = 111
133
134# End of iteration
135Result = Composite
136W = 6c1
137B = 11d
138
139# Found non-trivial square root
140Result = Composite
141W = 6c1
142B = 19c
143
144# Found non-trivial square root
145Result = Composite
146W = 6c1
147B = 223
148
149# End of iteration
150Result = Composite
151W = 6c1
152B = 3aa
153
154# Found non-trivial square root
155Result = Composite
156W = 6c1
157B = 653
158
159
160# 1729 has a number of false witnesses.
161
162# b^m = 1
163Result = PossiblyPrime
164W = 6c1
165B = 78
166
167# b^m = 1
168Result = PossiblyPrime
169W = 6c1
170B = eb
171
172# b^m = w-1
173Result = PossiblyPrime
174W = 6c1
175B = 178
176
177# b^m = w-1
178Result = PossiblyPrime
179W = 6c1
180B = 178
181
182# b^m = w-1
183Result = PossiblyPrime
184W = 6c1
185B = 1aa
186
187# b^m = 1
188Result = PossiblyPrime
189W = 6c1
190B = 271
191
192# b^m = 1
193Result = PossiblyPrime
194W = 6c1
195B = 2b2
196
197
198# 1 and W-1 are always nonwitnesses.
199Result = PossiblyPrime
200W = 6c1
201B = 1
202
203Result = PossiblyPrime
204W = 6c1
205B = 6c0
206
207
208# https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf, examples
209# 3.1 and 3.2 has a complete list of false witnesses for 65 = 0x41 and
210# 85 = 0x55.
211
212# b^m = 1
213Result = PossiblyPrime
214W = 41
215B = 1
216
217# Some b^(m*2^j) = w-1
218Result = PossiblyPrime
219W = 41
220B = 8
221
222# Some b^(m*2^j) = w-1
223Result = PossiblyPrime
224W = 41
225B = 12
226
227# Some b^(m*2^j) = w-1
228Result = PossiblyPrime
229W = 41
230B = 2f
231
232# Some b^(m*2^j) = w-1
233Result = PossiblyPrime
234W = 41
235B = 39
236
237# b^m = w-1
238Result = PossiblyPrime
239W = 41
240B = 40
241
242# b^m = 1
243Result = PossiblyPrime
244W = 55
245B = 1
246
247# Some b^(m*2^j) = w-1
248Result = PossiblyPrime
249W = 55
250B = d
251
252# Some b^(m*2^j) = w-1
253Result = PossiblyPrime
254W = 55
255B = 26
256
257# Some b^(m*2^j) = w-1
258Result = PossiblyPrime
259W = 55
260B = 2f
261
262# Some b^(m*2^j) = w-1
263Result = PossiblyPrime
264W = 55
265B = 48
266
267# b^m = w-1
268Result = PossiblyPrime
269W = 55
270B = 54
271
272# Other witnesses for 65 and 85 will report composite:
273
274# Found non-trivial square root
275Result = Composite
276W = 41
277B = 2c
278
279# End of iteration
280Result = Composite
281W = 41
282B = 16
283
284# End of iteration
285Result = Composite
286W = 41
287B = 14
288
289# End of iteration
290Result = Composite
291W = 41
292B = 2
293
294# End of iteration
295Result = Composite
296W = 41
297B = 3a
298
299# End of iteration
300Result = Composite
301W = 55
302B = 40
303
304# End of iteration
305Result = Composite
306W = 55
307B = 7
308
309# End of iteration
310Result = Composite
311W = 55
312B = 23
313
314# End of iteration
315Result = Composite
316W = 55
317B = 2e
318
319# End of iteration
320Result = Composite
321W = 55
322B = 2a
323