1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/cipher.h>
58
59 #include <assert.h>
60 #include <string.h>
61
62 #include <openssl/err.h>
63 #include <openssl/mem.h>
64 #include <openssl/nid.h>
65
66 #include "internal.h"
67 #include "../../internal.h"
68
69
EVP_CIPHER_CTX_init(EVP_CIPHER_CTX * ctx)70 void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) {
71 OPENSSL_memset(ctx, 0, sizeof(EVP_CIPHER_CTX));
72 }
73
EVP_CIPHER_CTX_new(void)74 EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) {
75 EVP_CIPHER_CTX *ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX));
76 if (ctx) {
77 EVP_CIPHER_CTX_init(ctx);
78 }
79 return ctx;
80 }
81
EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX * c)82 int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) {
83 if (c->cipher != NULL && c->cipher->cleanup) {
84 c->cipher->cleanup(c);
85 }
86 OPENSSL_free(c->cipher_data);
87
88 OPENSSL_memset(c, 0, sizeof(EVP_CIPHER_CTX));
89 return 1;
90 }
91
EVP_CIPHER_CTX_free(EVP_CIPHER_CTX * ctx)92 void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) {
93 if (ctx) {
94 EVP_CIPHER_CTX_cleanup(ctx);
95 OPENSSL_free(ctx);
96 }
97 }
98
EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX * out,const EVP_CIPHER_CTX * in)99 int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) {
100 if (in == NULL || in->cipher == NULL) {
101 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INPUT_NOT_INITIALIZED);
102 return 0;
103 }
104
105 EVP_CIPHER_CTX_cleanup(out);
106 OPENSSL_memcpy(out, in, sizeof(EVP_CIPHER_CTX));
107
108 if (in->cipher_data && in->cipher->ctx_size) {
109 out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size);
110 if (!out->cipher_data) {
111 out->cipher = NULL;
112 OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
113 return 0;
114 }
115 OPENSSL_memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size);
116 }
117
118 if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) {
119 if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) {
120 out->cipher = NULL;
121 return 0;
122 }
123 }
124
125 return 1;
126 }
127
EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX * ctx)128 int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx) {
129 EVP_CIPHER_CTX_cleanup(ctx);
130 EVP_CIPHER_CTX_init(ctx);
131 return 1;
132 }
133
EVP_CipherInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * engine,const uint8_t * key,const uint8_t * iv,int enc)134 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
135 ENGINE *engine, const uint8_t *key, const uint8_t *iv,
136 int enc) {
137 if (enc == -1) {
138 enc = ctx->encrypt;
139 } else {
140 if (enc) {
141 enc = 1;
142 }
143 ctx->encrypt = enc;
144 }
145
146 if (cipher) {
147 // Ensure a context left from last time is cleared (the previous check
148 // attempted to avoid this if the same ENGINE and EVP_CIPHER could be
149 // used).
150 if (ctx->cipher) {
151 EVP_CIPHER_CTX_cleanup(ctx);
152 // Restore encrypt and flags
153 ctx->encrypt = enc;
154 }
155
156 ctx->cipher = cipher;
157 if (ctx->cipher->ctx_size) {
158 ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size);
159 if (!ctx->cipher_data) {
160 ctx->cipher = NULL;
161 OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
162 return 0;
163 }
164 } else {
165 ctx->cipher_data = NULL;
166 }
167
168 ctx->key_len = cipher->key_len;
169 ctx->flags = 0;
170
171 if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) {
172 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) {
173 ctx->cipher = NULL;
174 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INITIALIZATION_ERROR);
175 return 0;
176 }
177 }
178 } else if (!ctx->cipher) {
179 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
180 return 0;
181 }
182
183 // we assume block size is a power of 2 in *cryptUpdate
184 assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 ||
185 ctx->cipher->block_size == 16);
186
187 if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) {
188 switch (EVP_CIPHER_CTX_mode(ctx)) {
189 case EVP_CIPH_STREAM_CIPHER:
190 case EVP_CIPH_ECB_MODE:
191 break;
192
193 case EVP_CIPH_CFB_MODE:
194 ctx->num = 0;
195 OPENSSL_FALLTHROUGH;
196
197 case EVP_CIPH_CBC_MODE:
198 assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv));
199 if (iv) {
200 OPENSSL_memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx));
201 }
202 OPENSSL_memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx));
203 break;
204
205 case EVP_CIPH_CTR_MODE:
206 case EVP_CIPH_OFB_MODE:
207 ctx->num = 0;
208 // Don't reuse IV for CTR mode
209 if (iv) {
210 OPENSSL_memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
211 }
212 break;
213
214 default:
215 return 0;
216 }
217 }
218
219 if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) {
220 if (!ctx->cipher->init(ctx, key, iv, enc)) {
221 return 0;
222 }
223 }
224
225 ctx->buf_len = 0;
226 ctx->final_used = 0;
227 ctx->block_mask = ctx->cipher->block_size - 1;
228 return 1;
229 }
230
EVP_EncryptInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * impl,const uint8_t * key,const uint8_t * iv)231 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
232 ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
233 return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1);
234 }
235
EVP_DecryptInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * impl,const uint8_t * key,const uint8_t * iv)236 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
237 ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
238 return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0);
239 }
240
EVP_EncryptUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)241 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
242 const uint8_t *in, int in_len) {
243 int i, j, bl;
244
245 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
246 i = ctx->cipher->cipher(ctx, out, in, in_len);
247 if (i < 0) {
248 return 0;
249 } else {
250 *out_len = i;
251 }
252 return 1;
253 }
254
255 if (in_len <= 0) {
256 *out_len = 0;
257 return in_len == 0;
258 }
259
260 if (ctx->buf_len == 0 && (in_len & ctx->block_mask) == 0) {
261 if (ctx->cipher->cipher(ctx, out, in, in_len)) {
262 *out_len = in_len;
263 return 1;
264 } else {
265 *out_len = 0;
266 return 0;
267 }
268 }
269
270 i = ctx->buf_len;
271 bl = ctx->cipher->block_size;
272 assert(bl <= (int)sizeof(ctx->buf));
273 if (i != 0) {
274 if (bl - i > in_len) {
275 OPENSSL_memcpy(&ctx->buf[i], in, in_len);
276 ctx->buf_len += in_len;
277 *out_len = 0;
278 return 1;
279 } else {
280 j = bl - i;
281 OPENSSL_memcpy(&ctx->buf[i], in, j);
282 if (!ctx->cipher->cipher(ctx, out, ctx->buf, bl)) {
283 return 0;
284 }
285 in_len -= j;
286 in += j;
287 out += bl;
288 *out_len = bl;
289 }
290 } else {
291 *out_len = 0;
292 }
293
294 i = in_len & ctx->block_mask;
295 in_len -= i;
296 if (in_len > 0) {
297 if (!ctx->cipher->cipher(ctx, out, in, in_len)) {
298 return 0;
299 }
300 *out_len += in_len;
301 }
302
303 if (i != 0) {
304 OPENSSL_memcpy(ctx->buf, &in[in_len], i);
305 }
306 ctx->buf_len = i;
307 return 1;
308 }
309
EVP_EncryptFinal_ex(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len)310 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
311 int n, ret;
312 unsigned int i, b, bl;
313
314 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
315 ret = ctx->cipher->cipher(ctx, out, NULL, 0);
316 if (ret < 0) {
317 return 0;
318 } else {
319 *out_len = ret;
320 }
321 return 1;
322 }
323
324 b = ctx->cipher->block_size;
325 assert(b <= sizeof(ctx->buf));
326 if (b == 1) {
327 *out_len = 0;
328 return 1;
329 }
330
331 bl = ctx->buf_len;
332 if (ctx->flags & EVP_CIPH_NO_PADDING) {
333 if (bl) {
334 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
335 return 0;
336 }
337 *out_len = 0;
338 return 1;
339 }
340
341 n = b - bl;
342 for (i = bl; i < b; i++) {
343 ctx->buf[i] = n;
344 }
345 ret = ctx->cipher->cipher(ctx, out, ctx->buf, b);
346
347 if (ret) {
348 *out_len = b;
349 }
350
351 return ret;
352 }
353
EVP_DecryptUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)354 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
355 const uint8_t *in, int in_len) {
356 int fix_len;
357 unsigned int b;
358
359 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
360 int r = ctx->cipher->cipher(ctx, out, in, in_len);
361 if (r < 0) {
362 *out_len = 0;
363 return 0;
364 } else {
365 *out_len = r;
366 }
367 return 1;
368 }
369
370 if (in_len <= 0) {
371 *out_len = 0;
372 return in_len == 0;
373 }
374
375 if (ctx->flags & EVP_CIPH_NO_PADDING) {
376 return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
377 }
378
379 b = ctx->cipher->block_size;
380 assert(b <= sizeof(ctx->final));
381
382 if (ctx->final_used) {
383 OPENSSL_memcpy(out, ctx->final, b);
384 out += b;
385 fix_len = 1;
386 } else {
387 fix_len = 0;
388 }
389
390 if (!EVP_EncryptUpdate(ctx, out, out_len, in, in_len)) {
391 return 0;
392 }
393
394 // if we have 'decrypted' a multiple of block size, make sure
395 // we have a copy of this last block
396 if (b > 1 && !ctx->buf_len) {
397 *out_len -= b;
398 ctx->final_used = 1;
399 OPENSSL_memcpy(ctx->final, &out[*out_len], b);
400 } else {
401 ctx->final_used = 0;
402 }
403
404 if (fix_len) {
405 *out_len += b;
406 }
407
408 return 1;
409 }
410
EVP_DecryptFinal_ex(EVP_CIPHER_CTX * ctx,unsigned char * out,int * out_len)411 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len) {
412 int i, n;
413 unsigned int b;
414 *out_len = 0;
415
416 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
417 i = ctx->cipher->cipher(ctx, out, NULL, 0);
418 if (i < 0) {
419 return 0;
420 } else {
421 *out_len = i;
422 }
423 return 1;
424 }
425
426 b = ctx->cipher->block_size;
427 if (ctx->flags & EVP_CIPH_NO_PADDING) {
428 if (ctx->buf_len) {
429 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
430 return 0;
431 }
432 *out_len = 0;
433 return 1;
434 }
435
436 if (b > 1) {
437 if (ctx->buf_len || !ctx->final_used) {
438 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_WRONG_FINAL_BLOCK_LENGTH);
439 return 0;
440 }
441 assert(b <= sizeof(ctx->final));
442
443 // The following assumes that the ciphertext has been authenticated.
444 // Otherwise it provides a padding oracle.
445 n = ctx->final[b - 1];
446 if (n == 0 || n > (int)b) {
447 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
448 return 0;
449 }
450
451 for (i = 0; i < n; i++) {
452 if (ctx->final[--b] != n) {
453 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
454 return 0;
455 }
456 }
457
458 n = ctx->cipher->block_size - n;
459 for (i = 0; i < n; i++) {
460 out[i] = ctx->final[i];
461 }
462 *out_len = n;
463 } else {
464 *out_len = 0;
465 }
466
467 return 1;
468 }
469
EVP_Cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t in_len)470 int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
471 size_t in_len) {
472 return ctx->cipher->cipher(ctx, out, in, in_len);
473 }
474
EVP_CipherUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)475 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
476 const uint8_t *in, int in_len) {
477 if (ctx->encrypt) {
478 return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
479 } else {
480 return EVP_DecryptUpdate(ctx, out, out_len, in, in_len);
481 }
482 }
483
EVP_CipherFinal_ex(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len)484 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
485 if (ctx->encrypt) {
486 return EVP_EncryptFinal_ex(ctx, out, out_len);
487 } else {
488 return EVP_DecryptFinal_ex(ctx, out, out_len);
489 }
490 }
491
EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX * ctx)492 const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) {
493 return ctx->cipher;
494 }
495
EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX * ctx)496 int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) {
497 return ctx->cipher->nid;
498 }
499
EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX * ctx)500 int EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx) {
501 return ctx->encrypt;
502 }
503
EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX * ctx)504 unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) {
505 return ctx->cipher->block_size;
506 }
507
EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX * ctx)508 unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) {
509 return ctx->key_len;
510 }
511
EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX * ctx)512 unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) {
513 return ctx->cipher->iv_len;
514 }
515
EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX * ctx)516 void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) {
517 return ctx->app_data;
518 }
519
EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX * ctx,void * data)520 void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) {
521 ctx->app_data = data;
522 }
523
EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX * ctx)524 uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) {
525 return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK;
526 }
527
EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX * ctx)528 uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) {
529 return ctx->cipher->flags & EVP_CIPH_MODE_MASK;
530 }
531
EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX * ctx,int command,int arg,void * ptr)532 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) {
533 int ret;
534 if (!ctx->cipher) {
535 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
536 return 0;
537 }
538
539 if (!ctx->cipher->ctrl) {
540 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED);
541 return 0;
542 }
543
544 ret = ctx->cipher->ctrl(ctx, command, arg, ptr);
545 if (ret == -1) {
546 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED);
547 return 0;
548 }
549
550 return ret;
551 }
552
EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX * ctx,int pad)553 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) {
554 if (pad) {
555 ctx->flags &= ~EVP_CIPH_NO_PADDING;
556 } else {
557 ctx->flags |= EVP_CIPH_NO_PADDING;
558 }
559 return 1;
560 }
561
EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX * c,unsigned key_len)562 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) {
563 if (c->key_len == key_len) {
564 return 1;
565 }
566
567 if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) {
568 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_KEY_LENGTH);
569 return 0;
570 }
571
572 c->key_len = key_len;
573 return 1;
574 }
575
EVP_CIPHER_nid(const EVP_CIPHER * cipher)576 int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; }
577
EVP_CIPHER_block_size(const EVP_CIPHER * cipher)578 unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) {
579 return cipher->block_size;
580 }
581
EVP_CIPHER_key_length(const EVP_CIPHER * cipher)582 unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) {
583 return cipher->key_len;
584 }
585
EVP_CIPHER_iv_length(const EVP_CIPHER * cipher)586 unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) {
587 return cipher->iv_len;
588 }
589
EVP_CIPHER_flags(const EVP_CIPHER * cipher)590 uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) {
591 return cipher->flags & ~EVP_CIPH_MODE_MASK;
592 }
593
EVP_CIPHER_mode(const EVP_CIPHER * cipher)594 uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) {
595 return cipher->flags & EVP_CIPH_MODE_MASK;
596 }
597
EVP_CipherInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv,int enc)598 int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
599 const uint8_t *key, const uint8_t *iv, int enc) {
600 if (cipher) {
601 EVP_CIPHER_CTX_init(ctx);
602 }
603 return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc);
604 }
605
EVP_EncryptInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv)606 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
607 const uint8_t *key, const uint8_t *iv) {
608 return EVP_CipherInit(ctx, cipher, key, iv, 1);
609 }
610
EVP_DecryptInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv)611 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
612 const uint8_t *key, const uint8_t *iv) {
613 return EVP_CipherInit(ctx, cipher, key, iv, 0);
614 }
615
EVP_add_cipher_alias(const char * a,const char * b)616 int EVP_add_cipher_alias(const char *a, const char *b) {
617 return 1;
618 }
619
EVP_CIPHER_CTX_set_flags(const EVP_CIPHER_CTX * ctx,uint32_t flags)620 void EVP_CIPHER_CTX_set_flags(const EVP_CIPHER_CTX *ctx, uint32_t flags) {}
621