1#! /usr/bin/env perl 2# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. 3# 4# Licensed under the OpenSSL license (the "License"). You may not use 5# this file except in compliance with the License. You can obtain a copy 6# in the file LICENSE in the source distribution or at 7# https://www.openssl.org/source/license.html 8 9# ==================================================================== 10# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 11# project. The module is, however, dual licensed under OpenSSL and 12# CRYPTOGAMS licenses depending on where you obtain it. For further 13# details see http://www.openssl.org/~appro/cryptogams/. 14# 15# Permission to use under GPLv2 terms is granted. 16# ==================================================================== 17# 18# SHA256/512 for ARMv8. 19# 20# Performance in cycles per processed byte and improvement coefficient 21# over code generated with "default" compiler: 22# 23# SHA256-hw SHA256(*) SHA512 24# Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**)) 25# Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***)) 26# Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***)) 27# Denver 2.01 10.5 (+26%) 6.70 (+8%) 28# X-Gene 20.0 (+100%) 12.8 (+300%(***)) 29# Mongoose 2.36 13.0 (+50%) 8.36 (+33%) 30# 31# (*) Software SHA256 results are of lesser relevance, presented 32# mostly for informational purposes. 33# (**) The result is a trade-off: it's possible to improve it by 34# 10% (or by 1 cycle per round), but at the cost of 20% loss 35# on Cortex-A53 (or by 4 cycles per round). 36# (***) Super-impressive coefficients over gcc-generated code are 37# indication of some compiler "pathology", most notably code 38# generated with -mgeneral-regs-only is significanty faster 39# and the gap is only 40-90%. 40 41$output=pop; 42$flavour=pop; 43 44if ($flavour && $flavour ne "void") { 45 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 46 ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or 47 ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or 48 die "can't locate arm-xlate.pl"; 49 50 open OUT,"| \"$^X\" $xlate $flavour $output"; 51 *STDOUT=*OUT; 52} else { 53 open OUT,">$output"; 54 *STDOUT=*OUT; 55} 56 57if ($output =~ /512/) { 58 $BITS=512; 59 $SZ=8; 60 @Sigma0=(28,34,39); 61 @Sigma1=(14,18,41); 62 @sigma0=(1, 8, 7); 63 @sigma1=(19,61, 6); 64 $rounds=80; 65 $reg_t="x"; 66} else { 67 $BITS=256; 68 $SZ=4; 69 @Sigma0=( 2,13,22); 70 @Sigma1=( 6,11,25); 71 @sigma0=( 7,18, 3); 72 @sigma1=(17,19,10); 73 $rounds=64; 74 $reg_t="w"; 75} 76 77$func="sha${BITS}_block_data_order"; 78 79($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30)); 80 81@X=map("$reg_t$_",(3..15,0..2)); 82@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27)); 83($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28)); 84 85sub BODY_00_xx { 86my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; 87my $j=($i+1)&15; 88my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]); 89 $T0=@X[$i+3] if ($i<11); 90 91$code.=<<___ if ($i<16); 92#ifndef __ARMEB__ 93 rev @X[$i],@X[$i] // $i 94#endif 95___ 96$code.=<<___ if ($i<13 && ($i&1)); 97 ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ 98___ 99$code.=<<___ if ($i==13); 100 ldp @X[14],@X[15],[$inp] 101___ 102$code.=<<___ if ($i>=14); 103 ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`] 104___ 105$code.=<<___ if ($i>0 && $i<16); 106 add $a,$a,$t1 // h+=Sigma0(a) 107___ 108$code.=<<___ if ($i>=11); 109 str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`] 110___ 111# While ARMv8 specifies merged rotate-n-logical operation such as 112# 'eor x,y,z,ror#n', it was found to negatively affect performance 113# on Apple A7. The reason seems to be that it requires even 'y' to 114# be available earlier. This means that such merged instruction is 115# not necessarily best choice on critical path... On the other hand 116# Cortex-A5x handles merged instructions much better than disjoint 117# rotate and logical... See (**) footnote above. 118$code.=<<___ if ($i<15); 119 ror $t0,$e,#$Sigma1[0] 120 add $h,$h,$t2 // h+=K[i] 121 eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]` 122 and $t1,$f,$e 123 bic $t2,$g,$e 124 add $h,$h,@X[$i&15] // h+=X[i] 125 orr $t1,$t1,$t2 // Ch(e,f,g) 126 eor $t2,$a,$b // a^b, b^c in next round 127 eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e) 128 ror $T0,$a,#$Sigma0[0] 129 add $h,$h,$t1 // h+=Ch(e,f,g) 130 eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]` 131 add $h,$h,$t0 // h+=Sigma1(e) 132 and $t3,$t3,$t2 // (b^c)&=(a^b) 133 add $d,$d,$h // d+=h 134 eor $t3,$t3,$b // Maj(a,b,c) 135 eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a) 136 add $h,$h,$t3 // h+=Maj(a,b,c) 137 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round 138 //add $h,$h,$t1 // h+=Sigma0(a) 139___ 140$code.=<<___ if ($i>=15); 141 ror $t0,$e,#$Sigma1[0] 142 add $h,$h,$t2 // h+=K[i] 143 ror $T1,@X[($j+1)&15],#$sigma0[0] 144 and $t1,$f,$e 145 ror $T2,@X[($j+14)&15],#$sigma1[0] 146 bic $t2,$g,$e 147 ror $T0,$a,#$Sigma0[0] 148 add $h,$h,@X[$i&15] // h+=X[i] 149 eor $t0,$t0,$e,ror#$Sigma1[1] 150 eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1] 151 orr $t1,$t1,$t2 // Ch(e,f,g) 152 eor $t2,$a,$b // a^b, b^c in next round 153 eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e) 154 eor $T0,$T0,$a,ror#$Sigma0[1] 155 add $h,$h,$t1 // h+=Ch(e,f,g) 156 and $t3,$t3,$t2 // (b^c)&=(a^b) 157 eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1] 158 eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1]) 159 add $h,$h,$t0 // h+=Sigma1(e) 160 eor $t3,$t3,$b // Maj(a,b,c) 161 eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a) 162 eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14]) 163 add @X[$j],@X[$j],@X[($j+9)&15] 164 add $d,$d,$h // d+=h 165 add $h,$h,$t3 // h+=Maj(a,b,c) 166 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round 167 add @X[$j],@X[$j],$T1 168 add $h,$h,$t1 // h+=Sigma0(a) 169 add @X[$j],@X[$j],$T2 170___ 171 ($t2,$t3)=($t3,$t2); 172} 173 174$code.=<<___; 175#ifndef __KERNEL__ 176# include <openssl/arm_arch.h> 177#endif 178 179.text 180 181.extern OPENSSL_armcap_P 182.globl $func 183.type $func,%function 184.align 6 185$func: 186___ 187$code.=<<___ if ($SZ==4); 188#ifndef __KERNEL__ 189#if __has_feature(hwaddress_sanitizer) && __clang_major__ >= 10 190 adrp x16,:pg_hi21_nc:OPENSSL_armcap_P 191#else 192 adrp x16,:pg_hi21:OPENSSL_armcap_P 193#endif 194 ldr w16,[x16,:lo12:OPENSSL_armcap_P] 195 tst w16,#ARMV8_SHA256 196 b.ne .Lv8_entry 197#endif 198___ 199$code.=<<___; 200 stp x29,x30,[sp,#-128]! 201 add x29,sp,#0 202 203 stp x19,x20,[sp,#16] 204 stp x21,x22,[sp,#32] 205 stp x23,x24,[sp,#48] 206 stp x25,x26,[sp,#64] 207 stp x27,x28,[sp,#80] 208 sub sp,sp,#4*$SZ 209 210 ldp $A,$B,[$ctx] // load context 211 ldp $C,$D,[$ctx,#2*$SZ] 212 ldp $E,$F,[$ctx,#4*$SZ] 213 add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input 214 ldp $G,$H,[$ctx,#6*$SZ] 215 adrp $Ktbl,:pg_hi21:.LK$BITS 216 add $Ktbl,$Ktbl,:lo12:.LK$BITS 217 stp $ctx,$num,[x29,#96] 218 219.Loop: 220 ldp @X[0],@X[1],[$inp],#2*$SZ 221 ldr $t2,[$Ktbl],#$SZ // *K++ 222 eor $t3,$B,$C // magic seed 223 str $inp,[x29,#112] 224___ 225for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); } 226$code.=".Loop_16_xx:\n"; 227for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); } 228$code.=<<___; 229 cbnz $t2,.Loop_16_xx 230 231 ldp $ctx,$num,[x29,#96] 232 ldr $inp,[x29,#112] 233 sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind 234 235 ldp @X[0],@X[1],[$ctx] 236 ldp @X[2],@X[3],[$ctx,#2*$SZ] 237 add $inp,$inp,#14*$SZ // advance input pointer 238 ldp @X[4],@X[5],[$ctx,#4*$SZ] 239 add $A,$A,@X[0] 240 ldp @X[6],@X[7],[$ctx,#6*$SZ] 241 add $B,$B,@X[1] 242 add $C,$C,@X[2] 243 add $D,$D,@X[3] 244 stp $A,$B,[$ctx] 245 add $E,$E,@X[4] 246 add $F,$F,@X[5] 247 stp $C,$D,[$ctx,#2*$SZ] 248 add $G,$G,@X[6] 249 add $H,$H,@X[7] 250 cmp $inp,$num 251 stp $E,$F,[$ctx,#4*$SZ] 252 stp $G,$H,[$ctx,#6*$SZ] 253 b.ne .Loop 254 255 ldp x19,x20,[x29,#16] 256 add sp,sp,#4*$SZ 257 ldp x21,x22,[x29,#32] 258 ldp x23,x24,[x29,#48] 259 ldp x25,x26,[x29,#64] 260 ldp x27,x28,[x29,#80] 261 ldp x29,x30,[sp],#128 262 ret 263.size $func,.-$func 264 265.section .rodata 266.align 6 267.type .LK$BITS,%object 268.LK$BITS: 269___ 270$code.=<<___ if ($SZ==8); 271 .quad 0x428a2f98d728ae22,0x7137449123ef65cd 272 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc 273 .quad 0x3956c25bf348b538,0x59f111f1b605d019 274 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 275 .quad 0xd807aa98a3030242,0x12835b0145706fbe 276 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 277 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 278 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 279 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 280 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 281 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 282 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 283 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 284 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 285 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 286 .quad 0x06ca6351e003826f,0x142929670a0e6e70 287 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 288 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df 289 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 290 .quad 0x81c2c92e47edaee6,0x92722c851482353b 291 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 292 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 293 .quad 0xd192e819d6ef5218,0xd69906245565a910 294 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 295 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 296 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 297 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb 298 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 299 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 300 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec 301 .quad 0x90befffa23631e28,0xa4506cebde82bde9 302 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b 303 .quad 0xca273eceea26619c,0xd186b8c721c0c207 304 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 305 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 306 .quad 0x113f9804bef90dae,0x1b710b35131c471b 307 .quad 0x28db77f523047d84,0x32caab7b40c72493 308 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c 309 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a 310 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 311 .quad 0 // terminator 312___ 313$code.=<<___ if ($SZ==4); 314 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 315 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 316 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 317 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 318 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc 319 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da 320 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 321 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 322 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 323 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 324 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 325 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 326 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 327 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 328 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 329 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 330 .long 0 //terminator 331___ 332$code.=<<___; 333.size .LK$BITS,.-.LK$BITS 334.asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>" 335.align 2 336___ 337 338if ($SZ==4) { 339my $Ktbl="x3"; 340 341my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2)); 342my @MSG=map("v$_.16b",(4..7)); 343my ($W0,$W1)=("v16.4s","v17.4s"); 344my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b"); 345 346$code.=<<___; 347.text 348#ifndef __KERNEL__ 349.type sha256_block_armv8,%function 350.align 6 351sha256_block_armv8: 352.Lv8_entry: 353 stp x29,x30,[sp,#-16]! 354 add x29,sp,#0 355 356 ld1.32 {$ABCD,$EFGH},[$ctx] 357 adrp $Ktbl,:pg_hi21:.LK256 358 add $Ktbl,$Ktbl,:lo12:.LK256 359 360.Loop_hw: 361 ld1 {@MSG[0]-@MSG[3]},[$inp],#64 362 sub $num,$num,#1 363 ld1.32 {$W0},[$Ktbl],#16 364 rev32 @MSG[0],@MSG[0] 365 rev32 @MSG[1],@MSG[1] 366 rev32 @MSG[2],@MSG[2] 367 rev32 @MSG[3],@MSG[3] 368 orr $ABCD_SAVE,$ABCD,$ABCD // offload 369 orr $EFGH_SAVE,$EFGH,$EFGH 370___ 371for($i=0;$i<12;$i++) { 372$code.=<<___; 373 ld1.32 {$W1},[$Ktbl],#16 374 add.i32 $W0,$W0,@MSG[0] 375 sha256su0 @MSG[0],@MSG[1] 376 orr $abcd,$ABCD,$ABCD 377 sha256h $ABCD,$EFGH,$W0 378 sha256h2 $EFGH,$abcd,$W0 379 sha256su1 @MSG[0],@MSG[2],@MSG[3] 380___ 381 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); 382} 383$code.=<<___; 384 ld1.32 {$W1},[$Ktbl],#16 385 add.i32 $W0,$W0,@MSG[0] 386 orr $abcd,$ABCD,$ABCD 387 sha256h $ABCD,$EFGH,$W0 388 sha256h2 $EFGH,$abcd,$W0 389 390 ld1.32 {$W0},[$Ktbl],#16 391 add.i32 $W1,$W1,@MSG[1] 392 orr $abcd,$ABCD,$ABCD 393 sha256h $ABCD,$EFGH,$W1 394 sha256h2 $EFGH,$abcd,$W1 395 396 ld1.32 {$W1},[$Ktbl] 397 add.i32 $W0,$W0,@MSG[2] 398 sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind 399 orr $abcd,$ABCD,$ABCD 400 sha256h $ABCD,$EFGH,$W0 401 sha256h2 $EFGH,$abcd,$W0 402 403 add.i32 $W1,$W1,@MSG[3] 404 orr $abcd,$ABCD,$ABCD 405 sha256h $ABCD,$EFGH,$W1 406 sha256h2 $EFGH,$abcd,$W1 407 408 add.i32 $ABCD,$ABCD,$ABCD_SAVE 409 add.i32 $EFGH,$EFGH,$EFGH_SAVE 410 411 cbnz $num,.Loop_hw 412 413 st1.32 {$ABCD,$EFGH},[$ctx] 414 415 ldr x29,[sp],#16 416 ret 417.size sha256_block_armv8,.-sha256_block_armv8 418#endif 419___ 420} 421 422$code.=<<___; 423#ifndef __KERNEL__ 424.comm OPENSSL_armcap_P,4,4 425.hidden OPENSSL_armcap_P 426#endif 427___ 428 429{ my %opcode = ( 430 "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000, 431 "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 ); 432 433 sub unsha256 { 434 my ($mnemonic,$arg)=@_; 435 436 $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o 437 && 438 sprintf ".inst\t0x%08x\t//%s %s", 439 $opcode{$mnemonic}|$1|($2<<5)|($3<<16), 440 $mnemonic,$arg; 441 } 442} 443 444open SELF,$0; 445while(<SELF>) { 446 next if (/^#!/); 447 last if (!s/^#/\/\// and !/^$/); 448 print; 449} 450close SELF; 451 452foreach(split("\n",$code)) { 453 454 s/\`([^\`]*)\`/eval($1)/geo; 455 456 s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/geo; 457 458 s/\.\w?32\b//o and s/\.16b/\.4s/go; 459 m/(ld|st)1[^\[]+\[0\]/o and s/\.4s/\.s/go; 460 461 print $_,"\n"; 462} 463 464close STDOUT or die "error closing STDOUT"; 465