• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2019 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SOURCE_FUZZ_EQUIVALENCE_RELATION_H_
16 #define SOURCE_FUZZ_EQUIVALENCE_RELATION_H_
17 
18 #include <memory>
19 #include <unordered_map>
20 #include <unordered_set>
21 #include <vector>
22 
23 #include "source/util/make_unique.h"
24 
25 namespace spvtools {
26 namespace fuzz {
27 
28 // A class for representing an equivalence relation on objects of type |T|,
29 // which should be a value type.  The type |T| is required to have a copy
30 // constructor, and |PointerHashT| and |PointerEqualsT| must be functors
31 // providing hashing and equality testing functionality for pointers to objects
32 // of type |T|.
33 //
34 // A disjoint-set (a.k.a. union-find or merge-find) data structure is used to
35 // represent the equivalence relation.  Path compression is used.  Union by
36 // rank/size is not used.
37 //
38 // Each disjoint set is represented as a tree, rooted at the representative
39 // of the set.
40 //
41 // Getting the representative of a value simply requires chasing parent pointers
42 // from the value until you reach the root.
43 //
44 // Checking equivalence of two elements requires checking that the
45 // representatives are equal.
46 //
47 // Traversing the tree rooted at a value's representative visits the value's
48 // equivalence class.
49 //
50 // |PointerHashT| and |PointerEqualsT| are used to define *equality* between
51 // values, and otherwise are *not* used to define the equivalence relation
52 // (except that equal values are equivalent).  The equivalence relation is
53 // constructed by repeatedly adding pairs of (typically non-equal) values that
54 // are deemed to be equivalent.
55 //
56 // For example in an equivalence relation on integers, 1 and 5 might be added
57 // as equivalent, so that IsEquivalent(1, 5) holds, because they represent
58 // IDs in a SPIR-V binary that are known to contain the same value at run time,
59 // but clearly 1 != 5.  Since 1 and 1 are equal, IsEquivalent(1, 1) will also
60 // hold.
61 //
62 // Each unique (up to equality) value added to the relation is copied into
63 // |owned_values_|, so there is one canonical memory address per unique value.
64 // Uniqueness is ensured by storing (and checking) a set of pointers to these
65 // values in |value_set_|, which uses |PointerHashT| and |PointerEqualsT|.
66 //
67 // |parent_| and |children_| encode the equivalence relation, i.e., the trees.
68 template <typename T, typename PointerHashT, typename PointerEqualsT>
69 class EquivalenceRelation {
70  public:
71   // Requires that |value1| and |value2| are already registered in the
72   // equivalence relation.  Merges the equivalence classes associated with
73   // |value1| and |value2|.
MakeEquivalent(const T & value1,const T & value2)74   void MakeEquivalent(const T& value1, const T& value2) {
75     assert(Exists(value1) &&
76            "Precondition: value1 must already be registered.");
77     assert(Exists(value2) &&
78            "Precondition: value2 must already be registered.");
79 
80     // Look up canonical pointers to each of the values in the value pool.
81     const T* value1_ptr = *value_set_.find(&value1);
82     const T* value2_ptr = *value_set_.find(&value2);
83 
84     // If the values turn out to be identical, they are already in the same
85     // equivalence class so there is nothing to do.
86     if (value1_ptr == value2_ptr) {
87       return;
88     }
89 
90     // Find the representative for each value's equivalence class, and if they
91     // are not already in the same class, make one the parent of the other.
92     const T* representative1 = Find(value1_ptr);
93     const T* representative2 = Find(value2_ptr);
94     assert(representative1 && "Representatives should never be null.");
95     assert(representative2 && "Representatives should never be null.");
96     if (representative1 != representative2) {
97       parent_[representative1] = representative2;
98       children_[representative2].push_back(representative1);
99     }
100   }
101 
102   // Requires that |value| is not known to the equivalence relation. Registers
103   // it in its own equivalence class and returns a pointer to the equivalence
104   // class representative.
Register(const T & value)105   const T* Register(const T& value) {
106     assert(!Exists(value));
107 
108     // This relies on T having a copy constructor.
109     auto unique_pointer_to_value = MakeUnique<T>(value);
110     auto pointer_to_value = unique_pointer_to_value.get();
111     owned_values_.push_back(std::move(unique_pointer_to_value));
112     value_set_.insert(pointer_to_value);
113 
114     // Initially say that the value is its own parent and that it has no
115     // children.
116     assert(pointer_to_value && "Representatives should never be null.");
117     parent_[pointer_to_value] = pointer_to_value;
118     children_[pointer_to_value] = std::vector<const T*>();
119 
120     return pointer_to_value;
121   }
122 
123   // Returns exactly one representative per equivalence class.
GetEquivalenceClassRepresentatives()124   std::vector<const T*> GetEquivalenceClassRepresentatives() const {
125     std::vector<const T*> result;
126     for (auto& value : owned_values_) {
127       if (parent_[value.get()] == value.get()) {
128         result.push_back(value.get());
129       }
130     }
131     return result;
132   }
133 
134   // Returns pointers to all values in the equivalence class of |value|, which
135   // must already be part of the equivalence relation.
GetEquivalenceClass(const T & value)136   std::vector<const T*> GetEquivalenceClass(const T& value) const {
137     assert(Exists(value));
138 
139     std::vector<const T*> result;
140 
141     // Traverse the tree of values rooted at the representative of the
142     // equivalence class to which |value| belongs, and collect up all the values
143     // that are encountered.  This constitutes the whole equivalence class.
144     std::vector<const T*> stack;
145     stack.push_back(Find(*value_set_.find(&value)));
146     while (!stack.empty()) {
147       const T* item = stack.back();
148       result.push_back(item);
149       stack.pop_back();
150       for (auto child : children_[item]) {
151         stack.push_back(child);
152       }
153     }
154     return result;
155   }
156 
157   // Returns true if and only if |value1| and |value2| are in the same
158   // equivalence class.  Both values must already be known to the equivalence
159   // relation.
IsEquivalent(const T & value1,const T & value2)160   bool IsEquivalent(const T& value1, const T& value2) const {
161     return Find(&value1) == Find(&value2);
162   }
163 
164   // Returns all values known to be part of the equivalence relation.
GetAllKnownValues()165   std::vector<const T*> GetAllKnownValues() const {
166     std::vector<const T*> result;
167     for (auto& value : owned_values_) {
168       result.push_back(value.get());
169     }
170     return result;
171   }
172 
173   // Returns true if and only if |value| is known to be part of the equivalence
174   // relation.
Exists(const T & value)175   bool Exists(const T& value) const {
176     return value_set_.find(&value) != value_set_.end();
177   }
178 
179   // Returns the representative of the equivalence class of |value|, which must
180   // already be known to the equivalence relation.  This is the 'Find' operation
181   // in a classic union-find data structure.
Find(const T * value)182   const T* Find(const T* value) const {
183     assert(Exists(*value));
184 
185     // Get the canonical pointer to the value from the value pool.
186     const T* known_value = *value_set_.find(value);
187     assert(parent_[known_value] && "Every known value should have a parent.");
188 
189     // Compute the result by chasing parents until we find a value that is its
190     // own parent.
191     const T* result = known_value;
192     while (parent_[result] != result) {
193       result = parent_[result];
194     }
195     assert(result && "Representatives should never be null.");
196 
197     // At this point, |result| is the representative of the equivalence class.
198     // Now perform the 'path compression' optimization by doing another pass up
199     // the parent chain, setting the parent of each node to be the
200     // representative, and rewriting children correspondingly.
201     const T* current = known_value;
202     while (parent_[current] != result) {
203       const T* next = parent_[current];
204       parent_[current] = result;
205       children_[result].push_back(current);
206       auto child_iterator =
207           std::find(children_[next].begin(), children_[next].end(), current);
208       assert(child_iterator != children_[next].end() &&
209              "'next' is the parent of 'current', so 'current' should be a "
210              "child of 'next'");
211       children_[next].erase(child_iterator);
212       current = next;
213     }
214     return result;
215   }
216 
217  private:
218   // Maps every value to a parent.  The representative of an equivalence class
219   // is its own parent.  A value's representative can be found by walking its
220   // chain of ancestors.
221   //
222   // Mutable because the intuitively const method, 'Find', performs path
223   // compression.
224   mutable std::unordered_map<const T*, const T*> parent_;
225 
226   // Stores the children of each value.  This allows the equivalence class of
227   // a value to be calculated by traversing all descendents of the class's
228   // representative.
229   //
230   // Mutable because the intuitively const method, 'Find', performs path
231   // compression.
232   mutable std::unordered_map<const T*, std::vector<const T*>> children_;
233 
234   // The values known to the equivalence relation are allocated in
235   // |owned_values_|, and |value_pool_| provides (via |PointerHashT| and
236   // |PointerEqualsT|) a means for mapping a value of interest to a pointer
237   // into an equivalent value in |owned_values_|.
238   std::unordered_set<const T*, PointerHashT, PointerEqualsT> value_set_;
239   std::vector<std::unique_ptr<T>> owned_values_;
240 };
241 
242 }  // namespace fuzz
243 }  // namespace spvtools
244 
245 #endif  // SOURCE_FUZZ_EQUIVALENCE_RELATION_H_
246