1 // Copyright (c) 2017 The Khronos Group Inc.
2 // Copyright (c) 2017 Valve Corporation
3 // Copyright (c) 2017 LunarG Inc.
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License");
6 // you may not use this file except in compliance with the License.
7 // You may obtain a copy of the License at
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16
17 #include "source/opt/mem_pass.h"
18
19 #include <memory>
20 #include <set>
21 #include <vector>
22
23 #include "source/cfa.h"
24 #include "source/opt/basic_block.h"
25 #include "source/opt/dominator_analysis.h"
26 #include "source/opt/ir_context.h"
27 #include "source/opt/iterator.h"
28
29 namespace spvtools {
30 namespace opt {
31
32 namespace {
33
34 const uint32_t kCopyObjectOperandInIdx = 0;
35 const uint32_t kTypePointerStorageClassInIdx = 0;
36 const uint32_t kTypePointerTypeIdInIdx = 1;
37
38 } // namespace
39
IsBaseTargetType(const Instruction * typeInst) const40 bool MemPass::IsBaseTargetType(const Instruction* typeInst) const {
41 switch (typeInst->opcode()) {
42 case SpvOpTypeInt:
43 case SpvOpTypeFloat:
44 case SpvOpTypeBool:
45 case SpvOpTypeVector:
46 case SpvOpTypeMatrix:
47 case SpvOpTypeImage:
48 case SpvOpTypeSampler:
49 case SpvOpTypeSampledImage:
50 case SpvOpTypePointer:
51 return true;
52 default:
53 break;
54 }
55 return false;
56 }
57
IsTargetType(const Instruction * typeInst) const58 bool MemPass::IsTargetType(const Instruction* typeInst) const {
59 if (IsBaseTargetType(typeInst)) return true;
60 if (typeInst->opcode() == SpvOpTypeArray) {
61 if (!IsTargetType(
62 get_def_use_mgr()->GetDef(typeInst->GetSingleWordOperand(1)))) {
63 return false;
64 }
65 return true;
66 }
67 if (typeInst->opcode() != SpvOpTypeStruct) return false;
68 // All struct members must be math type
69 return typeInst->WhileEachInId([this](const uint32_t* tid) {
70 Instruction* compTypeInst = get_def_use_mgr()->GetDef(*tid);
71 if (!IsTargetType(compTypeInst)) return false;
72 return true;
73 });
74 }
75
IsNonPtrAccessChain(const SpvOp opcode) const76 bool MemPass::IsNonPtrAccessChain(const SpvOp opcode) const {
77 return opcode == SpvOpAccessChain || opcode == SpvOpInBoundsAccessChain;
78 }
79
IsPtr(uint32_t ptrId)80 bool MemPass::IsPtr(uint32_t ptrId) {
81 uint32_t varId = ptrId;
82 Instruction* ptrInst = get_def_use_mgr()->GetDef(varId);
83 while (ptrInst->opcode() == SpvOpCopyObject) {
84 varId = ptrInst->GetSingleWordInOperand(kCopyObjectOperandInIdx);
85 ptrInst = get_def_use_mgr()->GetDef(varId);
86 }
87 const SpvOp op = ptrInst->opcode();
88 if (op == SpvOpVariable || IsNonPtrAccessChain(op)) return true;
89 if (op != SpvOpFunctionParameter) return false;
90 const uint32_t varTypeId = ptrInst->type_id();
91 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
92 return varTypeInst->opcode() == SpvOpTypePointer;
93 }
94
GetPtr(uint32_t ptrId,uint32_t * varId)95 Instruction* MemPass::GetPtr(uint32_t ptrId, uint32_t* varId) {
96 *varId = ptrId;
97 Instruction* ptrInst = get_def_use_mgr()->GetDef(*varId);
98 Instruction* varInst;
99
100 if (ptrInst->opcode() != SpvOpVariable &&
101 ptrInst->opcode() != SpvOpFunctionParameter) {
102 varInst = ptrInst->GetBaseAddress();
103 } else {
104 varInst = ptrInst;
105 }
106 if (varInst->opcode() == SpvOpVariable) {
107 *varId = varInst->result_id();
108 } else {
109 *varId = 0;
110 }
111
112 while (ptrInst->opcode() == SpvOpCopyObject) {
113 uint32_t temp = ptrInst->GetSingleWordInOperand(0);
114 ptrInst = get_def_use_mgr()->GetDef(temp);
115 }
116
117 return ptrInst;
118 }
119
GetPtr(Instruction * ip,uint32_t * varId)120 Instruction* MemPass::GetPtr(Instruction* ip, uint32_t* varId) {
121 assert(ip->opcode() == SpvOpStore || ip->opcode() == SpvOpLoad ||
122 ip->opcode() == SpvOpImageTexelPointer || ip->IsAtomicWithLoad());
123
124 // All of these opcode place the pointer in position 0.
125 const uint32_t ptrId = ip->GetSingleWordInOperand(0);
126 return GetPtr(ptrId, varId);
127 }
128
HasOnlyNamesAndDecorates(uint32_t id) const129 bool MemPass::HasOnlyNamesAndDecorates(uint32_t id) const {
130 return get_def_use_mgr()->WhileEachUser(id, [this](Instruction* user) {
131 SpvOp op = user->opcode();
132 if (op != SpvOpName && !IsNonTypeDecorate(op)) {
133 return false;
134 }
135 return true;
136 });
137 }
138
KillAllInsts(BasicBlock * bp,bool killLabel)139 void MemPass::KillAllInsts(BasicBlock* bp, bool killLabel) {
140 bp->KillAllInsts(killLabel);
141 }
142
HasLoads(uint32_t varId) const143 bool MemPass::HasLoads(uint32_t varId) const {
144 return !get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
145 SpvOp op = user->opcode();
146 // TODO(): The following is slightly conservative. Could be
147 // better handling of non-store/name.
148 if (IsNonPtrAccessChain(op) || op == SpvOpCopyObject) {
149 if (HasLoads(user->result_id())) {
150 return false;
151 }
152 } else if (op != SpvOpStore && op != SpvOpName && !IsNonTypeDecorate(op)) {
153 return false;
154 }
155 return true;
156 });
157 }
158
IsLiveVar(uint32_t varId) const159 bool MemPass::IsLiveVar(uint32_t varId) const {
160 const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
161 // assume live if not a variable eg. function parameter
162 if (varInst->opcode() != SpvOpVariable) return true;
163 // non-function scope vars are live
164 const uint32_t varTypeId = varInst->type_id();
165 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
166 if (varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) !=
167 SpvStorageClassFunction)
168 return true;
169 // test if variable is loaded from
170 return HasLoads(varId);
171 }
172
AddStores(uint32_t ptr_id,std::queue<Instruction * > * insts)173 void MemPass::AddStores(uint32_t ptr_id, std::queue<Instruction*>* insts) {
174 get_def_use_mgr()->ForEachUser(ptr_id, [this, insts](Instruction* user) {
175 SpvOp op = user->opcode();
176 if (IsNonPtrAccessChain(op)) {
177 AddStores(user->result_id(), insts);
178 } else if (op == SpvOpStore) {
179 insts->push(user);
180 }
181 });
182 }
183
DCEInst(Instruction * inst,const std::function<void (Instruction *)> & call_back)184 void MemPass::DCEInst(Instruction* inst,
185 const std::function<void(Instruction*)>& call_back) {
186 std::queue<Instruction*> deadInsts;
187 deadInsts.push(inst);
188 while (!deadInsts.empty()) {
189 Instruction* di = deadInsts.front();
190 // Don't delete labels
191 if (di->opcode() == SpvOpLabel) {
192 deadInsts.pop();
193 continue;
194 }
195 // Remember operands
196 std::set<uint32_t> ids;
197 di->ForEachInId([&ids](uint32_t* iid) { ids.insert(*iid); });
198 uint32_t varId = 0;
199 // Remember variable if dead load
200 if (di->opcode() == SpvOpLoad) (void)GetPtr(di, &varId);
201 if (call_back) {
202 call_back(di);
203 }
204 context()->KillInst(di);
205 // For all operands with no remaining uses, add their instruction
206 // to the dead instruction queue.
207 for (auto id : ids)
208 if (HasOnlyNamesAndDecorates(id)) {
209 Instruction* odi = get_def_use_mgr()->GetDef(id);
210 if (context()->IsCombinatorInstruction(odi)) deadInsts.push(odi);
211 }
212 // if a load was deleted and it was the variable's
213 // last load, add all its stores to dead queue
214 if (varId != 0 && !IsLiveVar(varId)) AddStores(varId, &deadInsts);
215 deadInsts.pop();
216 }
217 }
218
MemPass()219 MemPass::MemPass() {}
220
HasOnlySupportedRefs(uint32_t varId)221 bool MemPass::HasOnlySupportedRefs(uint32_t varId) {
222 return get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
223 SpvOp op = user->opcode();
224 if (op != SpvOpStore && op != SpvOpLoad && op != SpvOpName &&
225 !IsNonTypeDecorate(op)) {
226 return false;
227 }
228 return true;
229 });
230 }
231
Type2Undef(uint32_t type_id)232 uint32_t MemPass::Type2Undef(uint32_t type_id) {
233 const auto uitr = type2undefs_.find(type_id);
234 if (uitr != type2undefs_.end()) return uitr->second;
235 const uint32_t undefId = TakeNextId();
236 if (undefId == 0) {
237 return 0;
238 }
239
240 std::unique_ptr<Instruction> undef_inst(
241 new Instruction(context(), SpvOpUndef, type_id, undefId, {}));
242 get_def_use_mgr()->AnalyzeInstDefUse(&*undef_inst);
243 get_module()->AddGlobalValue(std::move(undef_inst));
244 type2undefs_[type_id] = undefId;
245 return undefId;
246 }
247
IsTargetVar(uint32_t varId)248 bool MemPass::IsTargetVar(uint32_t varId) {
249 if (varId == 0) {
250 return false;
251 }
252
253 if (seen_non_target_vars_.find(varId) != seen_non_target_vars_.end())
254 return false;
255 if (seen_target_vars_.find(varId) != seen_target_vars_.end()) return true;
256 const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
257 if (varInst->opcode() != SpvOpVariable) return false;
258 const uint32_t varTypeId = varInst->type_id();
259 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
260 if (varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) !=
261 SpvStorageClassFunction) {
262 seen_non_target_vars_.insert(varId);
263 return false;
264 }
265 const uint32_t varPteTypeId =
266 varTypeInst->GetSingleWordInOperand(kTypePointerTypeIdInIdx);
267 Instruction* varPteTypeInst = get_def_use_mgr()->GetDef(varPteTypeId);
268 if (!IsTargetType(varPteTypeInst)) {
269 seen_non_target_vars_.insert(varId);
270 return false;
271 }
272 seen_target_vars_.insert(varId);
273 return true;
274 }
275
276 // Remove all |phi| operands coming from unreachable blocks (i.e., blocks not in
277 // |reachable_blocks|). There are two types of removal that this function can
278 // perform:
279 //
280 // 1- Any operand that comes directly from an unreachable block is completely
281 // removed. Since the block is unreachable, the edge between the unreachable
282 // block and the block holding |phi| has been removed.
283 //
284 // 2- Any operand that comes via a live block and was defined at an unreachable
285 // block gets its value replaced with an OpUndef value. Since the argument
286 // was generated in an unreachable block, it no longer exists, so it cannot
287 // be referenced. However, since the value does not reach |phi| directly
288 // from the unreachable block, the operand cannot be removed from |phi|.
289 // Therefore, we replace the argument value with OpUndef.
290 //
291 // For example, in the switch() below, assume that we want to remove the
292 // argument with value %11 coming from block %41.
293 //
294 // [ ... ]
295 // %41 = OpLabel <--- Unreachable block
296 // %11 = OpLoad %int %y
297 // [ ... ]
298 // OpSelectionMerge %16 None
299 // OpSwitch %12 %16 10 %13 13 %14 18 %15
300 // %13 = OpLabel
301 // OpBranch %16
302 // %14 = OpLabel
303 // OpStore %outparm %int_14
304 // OpBranch %16
305 // %15 = OpLabel
306 // OpStore %outparm %int_15
307 // OpBranch %16
308 // %16 = OpLabel
309 // %30 = OpPhi %int %11 %41 %int_42 %13 %11 %14 %11 %15
310 //
311 // Since %41 is now an unreachable block, the first operand of |phi| needs to
312 // be removed completely. But the operands (%11 %14) and (%11 %15) cannot be
313 // removed because %14 and %15 are reachable blocks. Since %11 no longer exist,
314 // in those arguments, we replace all references to %11 with an OpUndef value.
315 // This results in |phi| looking like:
316 //
317 // %50 = OpUndef %int
318 // [ ... ]
319 // %30 = OpPhi %int %int_42 %13 %50 %14 %50 %15
RemovePhiOperands(Instruction * phi,const std::unordered_set<BasicBlock * > & reachable_blocks)320 void MemPass::RemovePhiOperands(
321 Instruction* phi, const std::unordered_set<BasicBlock*>& reachable_blocks) {
322 std::vector<Operand> keep_operands;
323 uint32_t type_id = 0;
324 // The id of an undefined value we've generated.
325 uint32_t undef_id = 0;
326
327 // Traverse all the operands in |phi|. Build the new operand vector by adding
328 // all the original operands from |phi| except the unwanted ones.
329 for (uint32_t i = 0; i < phi->NumOperands();) {
330 if (i < 2) {
331 // The first two arguments are always preserved.
332 keep_operands.push_back(phi->GetOperand(i));
333 ++i;
334 continue;
335 }
336
337 // The remaining Phi arguments come in pairs. Index 'i' contains the
338 // variable id, index 'i + 1' is the originating block id.
339 assert(i % 2 == 0 && i < phi->NumOperands() - 1 &&
340 "malformed Phi arguments");
341
342 BasicBlock* in_block = cfg()->block(phi->GetSingleWordOperand(i + 1));
343 if (reachable_blocks.find(in_block) == reachable_blocks.end()) {
344 // If the incoming block is unreachable, remove both operands as this
345 // means that the |phi| has lost an incoming edge.
346 i += 2;
347 continue;
348 }
349
350 // In all other cases, the operand must be kept but may need to be changed.
351 uint32_t arg_id = phi->GetSingleWordOperand(i);
352 Instruction* arg_def_instr = get_def_use_mgr()->GetDef(arg_id);
353 BasicBlock* def_block = context()->get_instr_block(arg_def_instr);
354 if (def_block &&
355 reachable_blocks.find(def_block) == reachable_blocks.end()) {
356 // If the current |phi| argument was defined in an unreachable block, it
357 // means that this |phi| argument is no longer defined. Replace it with
358 // |undef_id|.
359 if (!undef_id) {
360 type_id = arg_def_instr->type_id();
361 undef_id = Type2Undef(type_id);
362 }
363 keep_operands.push_back(
364 Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {undef_id}));
365 } else {
366 // Otherwise, the argument comes from a reachable block or from no block
367 // at all (meaning that it was defined in the global section of the
368 // program). In both cases, keep the argument intact.
369 keep_operands.push_back(phi->GetOperand(i));
370 }
371
372 keep_operands.push_back(phi->GetOperand(i + 1));
373
374 i += 2;
375 }
376
377 context()->ForgetUses(phi);
378 phi->ReplaceOperands(keep_operands);
379 context()->AnalyzeUses(phi);
380 }
381
RemoveBlock(Function::iterator * bi)382 void MemPass::RemoveBlock(Function::iterator* bi) {
383 auto& rm_block = **bi;
384
385 // Remove instructions from the block.
386 rm_block.ForEachInst([&rm_block, this](Instruction* inst) {
387 // Note that we do not kill the block label instruction here. The label
388 // instruction is needed to identify the block, which is needed by the
389 // removal of phi operands.
390 if (inst != rm_block.GetLabelInst()) {
391 context()->KillInst(inst);
392 }
393 });
394
395 // Remove the label instruction last.
396 auto label = rm_block.GetLabelInst();
397 context()->KillInst(label);
398
399 *bi = bi->Erase();
400 }
401
RemoveUnreachableBlocks(Function * func)402 bool MemPass::RemoveUnreachableBlocks(Function* func) {
403 bool modified = false;
404
405 // Mark reachable all blocks reachable from the function's entry block.
406 std::unordered_set<BasicBlock*> reachable_blocks;
407 std::unordered_set<BasicBlock*> visited_blocks;
408 std::queue<BasicBlock*> worklist;
409 reachable_blocks.insert(func->entry().get());
410
411 // Initially mark the function entry point as reachable.
412 worklist.push(func->entry().get());
413
414 auto mark_reachable = [&reachable_blocks, &visited_blocks, &worklist,
415 this](uint32_t label_id) {
416 auto successor = cfg()->block(label_id);
417 if (visited_blocks.count(successor) == 0) {
418 reachable_blocks.insert(successor);
419 worklist.push(successor);
420 visited_blocks.insert(successor);
421 }
422 };
423
424 // Transitively mark all blocks reachable from the entry as reachable.
425 while (!worklist.empty()) {
426 BasicBlock* block = worklist.front();
427 worklist.pop();
428
429 // All the successors of a live block are also live.
430 static_cast<const BasicBlock*>(block)->ForEachSuccessorLabel(
431 mark_reachable);
432
433 // All the Merge and ContinueTarget blocks of a live block are also live.
434 block->ForMergeAndContinueLabel(mark_reachable);
435 }
436
437 // Update operands of Phi nodes that reference unreachable blocks.
438 for (auto& block : *func) {
439 // If the block is about to be removed, don't bother updating its
440 // Phi instructions.
441 if (reachable_blocks.count(&block) == 0) {
442 continue;
443 }
444
445 // If the block is reachable and has Phi instructions, remove all
446 // operands from its Phi instructions that reference unreachable blocks.
447 // If the block has no Phi instructions, this is a no-op.
448 block.ForEachPhiInst([&reachable_blocks, this](Instruction* phi) {
449 RemovePhiOperands(phi, reachable_blocks);
450 });
451 }
452
453 // Erase unreachable blocks.
454 for (auto ebi = func->begin(); ebi != func->end();) {
455 if (reachable_blocks.count(&*ebi) == 0) {
456 RemoveBlock(&ebi);
457 modified = true;
458 } else {
459 ++ebi;
460 }
461 }
462
463 return modified;
464 }
465
CFGCleanup(Function * func)466 bool MemPass::CFGCleanup(Function* func) {
467 bool modified = false;
468 modified |= RemoveUnreachableBlocks(func);
469 return modified;
470 }
471
CollectTargetVars(Function * func)472 void MemPass::CollectTargetVars(Function* func) {
473 seen_target_vars_.clear();
474 seen_non_target_vars_.clear();
475 type2undefs_.clear();
476
477 // Collect target (and non-) variable sets. Remove variables with
478 // non-load/store refs from target variable set
479 for (auto& blk : *func) {
480 for (auto& inst : blk) {
481 switch (inst.opcode()) {
482 case SpvOpStore:
483 case SpvOpLoad: {
484 uint32_t varId;
485 (void)GetPtr(&inst, &varId);
486 if (!IsTargetVar(varId)) break;
487 if (HasOnlySupportedRefs(varId)) break;
488 seen_non_target_vars_.insert(varId);
489 seen_target_vars_.erase(varId);
490 } break;
491 default:
492 break;
493 }
494 }
495 }
496 }
497
498 } // namespace opt
499 } // namespace spvtools
500