1 //
2 // Copyright (C) 2014-2015 LunarG, Inc.
3 // Copyright (C) 2015-2018 Google, Inc.
4 // Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions
10 // are met:
11 //
12 // Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
14 //
15 // Redistributions in binary form must reproduce the above
16 // copyright notice, this list of conditions and the following
17 // disclaimer in the documentation and/or other materials provided
18 // with the distribution.
19 //
20 // Neither the name of 3Dlabs Inc. Ltd. nor the names of its
21 // contributors may be used to endorse or promote products derived
22 // from this software without specific prior written permission.
23 //
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 // POSSIBILITY OF SUCH DAMAGE.
36
37 //
38 // Helper for making SPIR-V IR. Generally, this is documented in the header
39 // SpvBuilder.h.
40 //
41
42 #include <cassert>
43 #include <cstdlib>
44
45 #include <unordered_set>
46 #include <algorithm>
47
48 #include "SpvBuilder.h"
49
50 #ifndef GLSLANG_WEB
51 #include "hex_float.h"
52 #endif
53
54 #ifndef _WIN32
55 #include <cstdio>
56 #endif
57
58 namespace spv {
59
Builder(unsigned int spvVersion,unsigned int magicNumber,SpvBuildLogger * buildLogger)60 Builder::Builder(unsigned int spvVersion, unsigned int magicNumber, SpvBuildLogger* buildLogger) :
61 spvVersion(spvVersion),
62 source(SourceLanguageUnknown),
63 sourceVersion(0),
64 sourceFileStringId(NoResult),
65 currentLine(0),
66 currentFile(nullptr),
67 emitOpLines(false),
68 addressModel(AddressingModelLogical),
69 memoryModel(MemoryModelGLSL450),
70 builderNumber(magicNumber),
71 buildPoint(0),
72 uniqueId(0),
73 entryPointFunction(0),
74 generatingOpCodeForSpecConst(false),
75 logger(buildLogger)
76 {
77 clearAccessChain();
78 }
79
~Builder()80 Builder::~Builder()
81 {
82 }
83
import(const char * name)84 Id Builder::import(const char* name)
85 {
86 Instruction* import = new Instruction(getUniqueId(), NoType, OpExtInstImport);
87 import->addStringOperand(name);
88 module.mapInstruction(import);
89
90 imports.push_back(std::unique_ptr<Instruction>(import));
91 return import->getResultId();
92 }
93
94 // Emit instruction for non-filename-based #line directives (ie. no filename
95 // seen yet): emit an OpLine if we've been asked to emit OpLines and the line
96 // number has changed since the last time, and is a valid line number.
setLine(int lineNum)97 void Builder::setLine(int lineNum)
98 {
99 if (lineNum != 0 && lineNum != currentLine) {
100 currentLine = lineNum;
101 if (emitOpLines)
102 addLine(sourceFileStringId, currentLine, 0);
103 }
104 }
105
106 // If no filename, do non-filename-based #line emit. Else do filename-based emit.
107 // Emit OpLine if we've been asked to emit OpLines and the line number or filename
108 // has changed since the last time, and line number is valid.
setLine(int lineNum,const char * filename)109 void Builder::setLine(int lineNum, const char* filename)
110 {
111 if (filename == nullptr) {
112 setLine(lineNum);
113 return;
114 }
115 if ((lineNum != 0 && lineNum != currentLine) || currentFile == nullptr ||
116 strncmp(filename, currentFile, strlen(currentFile) + 1) != 0) {
117 currentLine = lineNum;
118 currentFile = filename;
119 if (emitOpLines) {
120 spv::Id strId = getStringId(filename);
121 addLine(strId, currentLine, 0);
122 }
123 }
124 }
125
addLine(Id fileName,int lineNum,int column)126 void Builder::addLine(Id fileName, int lineNum, int column)
127 {
128 Instruction* line = new Instruction(OpLine);
129 line->addIdOperand(fileName);
130 line->addImmediateOperand(lineNum);
131 line->addImmediateOperand(column);
132 buildPoint->addInstruction(std::unique_ptr<Instruction>(line));
133 }
134
135 // For creating new groupedTypes (will return old type if the requested one was already made).
makeVoidType()136 Id Builder::makeVoidType()
137 {
138 Instruction* type;
139 if (groupedTypes[OpTypeVoid].size() == 0) {
140 type = new Instruction(getUniqueId(), NoType, OpTypeVoid);
141 groupedTypes[OpTypeVoid].push_back(type);
142 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
143 module.mapInstruction(type);
144 } else
145 type = groupedTypes[OpTypeVoid].back();
146
147 return type->getResultId();
148 }
149
makeBoolType()150 Id Builder::makeBoolType()
151 {
152 Instruction* type;
153 if (groupedTypes[OpTypeBool].size() == 0) {
154 type = new Instruction(getUniqueId(), NoType, OpTypeBool);
155 groupedTypes[OpTypeBool].push_back(type);
156 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
157 module.mapInstruction(type);
158 } else
159 type = groupedTypes[OpTypeBool].back();
160
161 return type->getResultId();
162 }
163
makeSamplerType()164 Id Builder::makeSamplerType()
165 {
166 Instruction* type;
167 if (groupedTypes[OpTypeSampler].size() == 0) {
168 type = new Instruction(getUniqueId(), NoType, OpTypeSampler);
169 groupedTypes[OpTypeSampler].push_back(type);
170 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
171 module.mapInstruction(type);
172 } else
173 type = groupedTypes[OpTypeSampler].back();
174
175 return type->getResultId();
176 }
177
makePointer(StorageClass storageClass,Id pointee)178 Id Builder::makePointer(StorageClass storageClass, Id pointee)
179 {
180 // try to find it
181 Instruction* type;
182 for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
183 type = groupedTypes[OpTypePointer][t];
184 if (type->getImmediateOperand(0) == (unsigned)storageClass &&
185 type->getIdOperand(1) == pointee)
186 return type->getResultId();
187 }
188
189 // not found, make it
190 type = new Instruction(getUniqueId(), NoType, OpTypePointer);
191 type->addImmediateOperand(storageClass);
192 type->addIdOperand(pointee);
193 groupedTypes[OpTypePointer].push_back(type);
194 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
195 module.mapInstruction(type);
196
197 return type->getResultId();
198 }
199
makeForwardPointer(StorageClass storageClass)200 Id Builder::makeForwardPointer(StorageClass storageClass)
201 {
202 // Caching/uniquifying doesn't work here, because we don't know the
203 // pointee type and there can be multiple forward pointers of the same
204 // storage type. Somebody higher up in the stack must keep track.
205 Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeForwardPointer);
206 type->addImmediateOperand(storageClass);
207 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
208 module.mapInstruction(type);
209
210 return type->getResultId();
211 }
212
makePointerFromForwardPointer(StorageClass storageClass,Id forwardPointerType,Id pointee)213 Id Builder::makePointerFromForwardPointer(StorageClass storageClass, Id forwardPointerType, Id pointee)
214 {
215 // try to find it
216 Instruction* type;
217 for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
218 type = groupedTypes[OpTypePointer][t];
219 if (type->getImmediateOperand(0) == (unsigned)storageClass &&
220 type->getIdOperand(1) == pointee)
221 return type->getResultId();
222 }
223
224 type = new Instruction(forwardPointerType, NoType, OpTypePointer);
225 type->addImmediateOperand(storageClass);
226 type->addIdOperand(pointee);
227 groupedTypes[OpTypePointer].push_back(type);
228 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
229 module.mapInstruction(type);
230
231 return type->getResultId();
232 }
233
makeIntegerType(int width,bool hasSign)234 Id Builder::makeIntegerType(int width, bool hasSign)
235 {
236 #ifdef GLSLANG_WEB
237 assert(width == 32);
238 width = 32;
239 #endif
240
241 // try to find it
242 Instruction* type;
243 for (int t = 0; t < (int)groupedTypes[OpTypeInt].size(); ++t) {
244 type = groupedTypes[OpTypeInt][t];
245 if (type->getImmediateOperand(0) == (unsigned)width &&
246 type->getImmediateOperand(1) == (hasSign ? 1u : 0u))
247 return type->getResultId();
248 }
249
250 // not found, make it
251 type = new Instruction(getUniqueId(), NoType, OpTypeInt);
252 type->addImmediateOperand(width);
253 type->addImmediateOperand(hasSign ? 1 : 0);
254 groupedTypes[OpTypeInt].push_back(type);
255 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
256 module.mapInstruction(type);
257
258 // deal with capabilities
259 switch (width) {
260 case 8:
261 case 16:
262 // these are currently handled by storage-type declarations and post processing
263 break;
264 case 64:
265 addCapability(CapabilityInt64);
266 break;
267 default:
268 break;
269 }
270
271 return type->getResultId();
272 }
273
makeFloatType(int width)274 Id Builder::makeFloatType(int width)
275 {
276 #ifdef GLSLANG_WEB
277 assert(width == 32);
278 width = 32;
279 #endif
280
281 // try to find it
282 Instruction* type;
283 for (int t = 0; t < (int)groupedTypes[OpTypeFloat].size(); ++t) {
284 type = groupedTypes[OpTypeFloat][t];
285 if (type->getImmediateOperand(0) == (unsigned)width)
286 return type->getResultId();
287 }
288
289 // not found, make it
290 type = new Instruction(getUniqueId(), NoType, OpTypeFloat);
291 type->addImmediateOperand(width);
292 groupedTypes[OpTypeFloat].push_back(type);
293 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
294 module.mapInstruction(type);
295
296 // deal with capabilities
297 switch (width) {
298 case 16:
299 // currently handled by storage-type declarations and post processing
300 break;
301 case 64:
302 addCapability(CapabilityFloat64);
303 break;
304 default:
305 break;
306 }
307
308 return type->getResultId();
309 }
310
311 // Make a struct without checking for duplication.
312 // See makeStructResultType() for non-decorated structs
313 // needed as the result of some instructions, which does
314 // check for duplicates.
makeStructType(const std::vector<Id> & members,const char * name)315 Id Builder::makeStructType(const std::vector<Id>& members, const char* name)
316 {
317 // Don't look for previous one, because in the general case,
318 // structs can be duplicated except for decorations.
319
320 // not found, make it
321 Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeStruct);
322 for (int op = 0; op < (int)members.size(); ++op)
323 type->addIdOperand(members[op]);
324 groupedTypes[OpTypeStruct].push_back(type);
325 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
326 module.mapInstruction(type);
327 addName(type->getResultId(), name);
328
329 return type->getResultId();
330 }
331
332 // Make a struct for the simple results of several instructions,
333 // checking for duplication.
makeStructResultType(Id type0,Id type1)334 Id Builder::makeStructResultType(Id type0, Id type1)
335 {
336 // try to find it
337 Instruction* type;
338 for (int t = 0; t < (int)groupedTypes[OpTypeStruct].size(); ++t) {
339 type = groupedTypes[OpTypeStruct][t];
340 if (type->getNumOperands() != 2)
341 continue;
342 if (type->getIdOperand(0) != type0 ||
343 type->getIdOperand(1) != type1)
344 continue;
345 return type->getResultId();
346 }
347
348 // not found, make it
349 std::vector<spv::Id> members;
350 members.push_back(type0);
351 members.push_back(type1);
352
353 return makeStructType(members, "ResType");
354 }
355
makeVectorType(Id component,int size)356 Id Builder::makeVectorType(Id component, int size)
357 {
358 // try to find it
359 Instruction* type;
360 for (int t = 0; t < (int)groupedTypes[OpTypeVector].size(); ++t) {
361 type = groupedTypes[OpTypeVector][t];
362 if (type->getIdOperand(0) == component &&
363 type->getImmediateOperand(1) == (unsigned)size)
364 return type->getResultId();
365 }
366
367 // not found, make it
368 type = new Instruction(getUniqueId(), NoType, OpTypeVector);
369 type->addIdOperand(component);
370 type->addImmediateOperand(size);
371 groupedTypes[OpTypeVector].push_back(type);
372 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
373 module.mapInstruction(type);
374
375 return type->getResultId();
376 }
377
makeMatrixType(Id component,int cols,int rows)378 Id Builder::makeMatrixType(Id component, int cols, int rows)
379 {
380 assert(cols <= maxMatrixSize && rows <= maxMatrixSize);
381
382 Id column = makeVectorType(component, rows);
383
384 // try to find it
385 Instruction* type;
386 for (int t = 0; t < (int)groupedTypes[OpTypeMatrix].size(); ++t) {
387 type = groupedTypes[OpTypeMatrix][t];
388 if (type->getIdOperand(0) == column &&
389 type->getImmediateOperand(1) == (unsigned)cols)
390 return type->getResultId();
391 }
392
393 // not found, make it
394 type = new Instruction(getUniqueId(), NoType, OpTypeMatrix);
395 type->addIdOperand(column);
396 type->addImmediateOperand(cols);
397 groupedTypes[OpTypeMatrix].push_back(type);
398 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
399 module.mapInstruction(type);
400
401 return type->getResultId();
402 }
403
makeCooperativeMatrixType(Id component,Id scope,Id rows,Id cols)404 Id Builder::makeCooperativeMatrixType(Id component, Id scope, Id rows, Id cols)
405 {
406 // try to find it
407 Instruction* type;
408 for (int t = 0; t < (int)groupedTypes[OpTypeCooperativeMatrixNV].size(); ++t) {
409 type = groupedTypes[OpTypeCooperativeMatrixNV][t];
410 if (type->getIdOperand(0) == component &&
411 type->getIdOperand(1) == scope &&
412 type->getIdOperand(2) == rows &&
413 type->getIdOperand(3) == cols)
414 return type->getResultId();
415 }
416
417 // not found, make it
418 type = new Instruction(getUniqueId(), NoType, OpTypeCooperativeMatrixNV);
419 type->addIdOperand(component);
420 type->addIdOperand(scope);
421 type->addIdOperand(rows);
422 type->addIdOperand(cols);
423 groupedTypes[OpTypeCooperativeMatrixNV].push_back(type);
424 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
425 module.mapInstruction(type);
426
427 return type->getResultId();
428 }
429
430
431 // TODO: performance: track arrays per stride
432 // If a stride is supplied (non-zero) make an array.
433 // If no stride (0), reuse previous array types.
434 // 'size' is an Id of a constant or specialization constant of the array size
makeArrayType(Id element,Id sizeId,int stride)435 Id Builder::makeArrayType(Id element, Id sizeId, int stride)
436 {
437 Instruction* type;
438 if (stride == 0) {
439 // try to find existing type
440 for (int t = 0; t < (int)groupedTypes[OpTypeArray].size(); ++t) {
441 type = groupedTypes[OpTypeArray][t];
442 if (type->getIdOperand(0) == element &&
443 type->getIdOperand(1) == sizeId)
444 return type->getResultId();
445 }
446 }
447
448 // not found, make it
449 type = new Instruction(getUniqueId(), NoType, OpTypeArray);
450 type->addIdOperand(element);
451 type->addIdOperand(sizeId);
452 groupedTypes[OpTypeArray].push_back(type);
453 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
454 module.mapInstruction(type);
455
456 return type->getResultId();
457 }
458
makeRuntimeArray(Id element)459 Id Builder::makeRuntimeArray(Id element)
460 {
461 Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeRuntimeArray);
462 type->addIdOperand(element);
463 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
464 module.mapInstruction(type);
465
466 return type->getResultId();
467 }
468
makeFunctionType(Id returnType,const std::vector<Id> & paramTypes)469 Id Builder::makeFunctionType(Id returnType, const std::vector<Id>& paramTypes)
470 {
471 // try to find it
472 Instruction* type;
473 for (int t = 0; t < (int)groupedTypes[OpTypeFunction].size(); ++t) {
474 type = groupedTypes[OpTypeFunction][t];
475 if (type->getIdOperand(0) != returnType || (int)paramTypes.size() != type->getNumOperands() - 1)
476 continue;
477 bool mismatch = false;
478 for (int p = 0; p < (int)paramTypes.size(); ++p) {
479 if (paramTypes[p] != type->getIdOperand(p + 1)) {
480 mismatch = true;
481 break;
482 }
483 }
484 if (! mismatch)
485 return type->getResultId();
486 }
487
488 // not found, make it
489 type = new Instruction(getUniqueId(), NoType, OpTypeFunction);
490 type->addIdOperand(returnType);
491 for (int p = 0; p < (int)paramTypes.size(); ++p)
492 type->addIdOperand(paramTypes[p]);
493 groupedTypes[OpTypeFunction].push_back(type);
494 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
495 module.mapInstruction(type);
496
497 return type->getResultId();
498 }
499
makeImageType(Id sampledType,Dim dim,bool depth,bool arrayed,bool ms,unsigned sampled,ImageFormat format)500 Id Builder::makeImageType(Id sampledType, Dim dim, bool depth, bool arrayed, bool ms, unsigned sampled,
501 ImageFormat format)
502 {
503 assert(sampled == 1 || sampled == 2);
504
505 // try to find it
506 Instruction* type;
507 for (int t = 0; t < (int)groupedTypes[OpTypeImage].size(); ++t) {
508 type = groupedTypes[OpTypeImage][t];
509 if (type->getIdOperand(0) == sampledType &&
510 type->getImmediateOperand(1) == (unsigned int)dim &&
511 type->getImmediateOperand(2) == ( depth ? 1u : 0u) &&
512 type->getImmediateOperand(3) == (arrayed ? 1u : 0u) &&
513 type->getImmediateOperand(4) == ( ms ? 1u : 0u) &&
514 type->getImmediateOperand(5) == sampled &&
515 type->getImmediateOperand(6) == (unsigned int)format)
516 return type->getResultId();
517 }
518
519 // not found, make it
520 type = new Instruction(getUniqueId(), NoType, OpTypeImage);
521 type->addIdOperand(sampledType);
522 type->addImmediateOperand( dim);
523 type->addImmediateOperand( depth ? 1 : 0);
524 type->addImmediateOperand(arrayed ? 1 : 0);
525 type->addImmediateOperand( ms ? 1 : 0);
526 type->addImmediateOperand(sampled);
527 type->addImmediateOperand((unsigned int)format);
528
529 groupedTypes[OpTypeImage].push_back(type);
530 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
531 module.mapInstruction(type);
532
533 #ifndef GLSLANG_WEB
534 // deal with capabilities
535 switch (dim) {
536 case DimBuffer:
537 if (sampled == 1)
538 addCapability(CapabilitySampledBuffer);
539 else
540 addCapability(CapabilityImageBuffer);
541 break;
542 case Dim1D:
543 if (sampled == 1)
544 addCapability(CapabilitySampled1D);
545 else
546 addCapability(CapabilityImage1D);
547 break;
548 case DimCube:
549 if (arrayed) {
550 if (sampled == 1)
551 addCapability(CapabilitySampledCubeArray);
552 else
553 addCapability(CapabilityImageCubeArray);
554 }
555 break;
556 case DimRect:
557 if (sampled == 1)
558 addCapability(CapabilitySampledRect);
559 else
560 addCapability(CapabilityImageRect);
561 break;
562 case DimSubpassData:
563 addCapability(CapabilityInputAttachment);
564 break;
565 default:
566 break;
567 }
568
569 if (ms) {
570 if (sampled == 2) {
571 // Images used with subpass data are not storage
572 // images, so don't require the capability for them.
573 if (dim != Dim::DimSubpassData)
574 addCapability(CapabilityStorageImageMultisample);
575 if (arrayed)
576 addCapability(CapabilityImageMSArray);
577 }
578 }
579 #endif
580
581 return type->getResultId();
582 }
583
makeSampledImageType(Id imageType)584 Id Builder::makeSampledImageType(Id imageType)
585 {
586 // try to find it
587 Instruction* type;
588 for (int t = 0; t < (int)groupedTypes[OpTypeSampledImage].size(); ++t) {
589 type = groupedTypes[OpTypeSampledImage][t];
590 if (type->getIdOperand(0) == imageType)
591 return type->getResultId();
592 }
593
594 // not found, make it
595 type = new Instruction(getUniqueId(), NoType, OpTypeSampledImage);
596 type->addIdOperand(imageType);
597
598 groupedTypes[OpTypeSampledImage].push_back(type);
599 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
600 module.mapInstruction(type);
601
602 return type->getResultId();
603 }
604
605 #ifndef GLSLANG_WEB
makeAccelerationStructureType()606 Id Builder::makeAccelerationStructureType()
607 {
608 Instruction *type;
609 if (groupedTypes[OpTypeAccelerationStructureKHR].size() == 0) {
610 type = new Instruction(getUniqueId(), NoType, OpTypeAccelerationStructureKHR);
611 groupedTypes[OpTypeAccelerationStructureKHR].push_back(type);
612 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
613 module.mapInstruction(type);
614 } else {
615 type = groupedTypes[OpTypeAccelerationStructureKHR].back();
616 }
617
618 return type->getResultId();
619 }
620
makeRayQueryType()621 Id Builder::makeRayQueryType()
622 {
623 Instruction *type;
624 if (groupedTypes[OpTypeRayQueryProvisionalKHR].size() == 0) {
625 type = new Instruction(getUniqueId(), NoType, OpTypeRayQueryProvisionalKHR);
626 groupedTypes[OpTypeRayQueryProvisionalKHR].push_back(type);
627 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
628 module.mapInstruction(type);
629 } else {
630 type = groupedTypes[OpTypeRayQueryProvisionalKHR].back();
631 }
632
633 return type->getResultId();
634 }
635 #endif
636
getDerefTypeId(Id resultId) const637 Id Builder::getDerefTypeId(Id resultId) const
638 {
639 Id typeId = getTypeId(resultId);
640 assert(isPointerType(typeId));
641
642 return module.getInstruction(typeId)->getIdOperand(1);
643 }
644
getMostBasicTypeClass(Id typeId) const645 Op Builder::getMostBasicTypeClass(Id typeId) const
646 {
647 Instruction* instr = module.getInstruction(typeId);
648
649 Op typeClass = instr->getOpCode();
650 switch (typeClass)
651 {
652 case OpTypeVector:
653 case OpTypeMatrix:
654 case OpTypeArray:
655 case OpTypeRuntimeArray:
656 return getMostBasicTypeClass(instr->getIdOperand(0));
657 case OpTypePointer:
658 return getMostBasicTypeClass(instr->getIdOperand(1));
659 default:
660 return typeClass;
661 }
662 }
663
getNumTypeConstituents(Id typeId) const664 int Builder::getNumTypeConstituents(Id typeId) const
665 {
666 Instruction* instr = module.getInstruction(typeId);
667
668 switch (instr->getOpCode())
669 {
670 case OpTypeBool:
671 case OpTypeInt:
672 case OpTypeFloat:
673 case OpTypePointer:
674 return 1;
675 case OpTypeVector:
676 case OpTypeMatrix:
677 return instr->getImmediateOperand(1);
678 case OpTypeArray:
679 {
680 Id lengthId = instr->getIdOperand(1);
681 return module.getInstruction(lengthId)->getImmediateOperand(0);
682 }
683 case OpTypeStruct:
684 return instr->getNumOperands();
685 case OpTypeCooperativeMatrixNV:
686 // has only one constituent when used with OpCompositeConstruct.
687 return 1;
688 default:
689 assert(0);
690 return 1;
691 }
692 }
693
694 // Return the lowest-level type of scalar that an homogeneous composite is made out of.
695 // Typically, this is just to find out if something is made out of ints or floats.
696 // However, it includes returning a structure, if say, it is an array of structure.
getScalarTypeId(Id typeId) const697 Id Builder::getScalarTypeId(Id typeId) const
698 {
699 Instruction* instr = module.getInstruction(typeId);
700
701 Op typeClass = instr->getOpCode();
702 switch (typeClass)
703 {
704 case OpTypeVoid:
705 case OpTypeBool:
706 case OpTypeInt:
707 case OpTypeFloat:
708 case OpTypeStruct:
709 return instr->getResultId();
710 case OpTypeVector:
711 case OpTypeMatrix:
712 case OpTypeArray:
713 case OpTypeRuntimeArray:
714 case OpTypePointer:
715 return getScalarTypeId(getContainedTypeId(typeId));
716 default:
717 assert(0);
718 return NoResult;
719 }
720 }
721
722 // Return the type of 'member' of a composite.
getContainedTypeId(Id typeId,int member) const723 Id Builder::getContainedTypeId(Id typeId, int member) const
724 {
725 Instruction* instr = module.getInstruction(typeId);
726
727 Op typeClass = instr->getOpCode();
728 switch (typeClass)
729 {
730 case OpTypeVector:
731 case OpTypeMatrix:
732 case OpTypeArray:
733 case OpTypeRuntimeArray:
734 case OpTypeCooperativeMatrixNV:
735 return instr->getIdOperand(0);
736 case OpTypePointer:
737 return instr->getIdOperand(1);
738 case OpTypeStruct:
739 return instr->getIdOperand(member);
740 default:
741 assert(0);
742 return NoResult;
743 }
744 }
745
746 // Return the immediately contained type of a given composite type.
getContainedTypeId(Id typeId) const747 Id Builder::getContainedTypeId(Id typeId) const
748 {
749 return getContainedTypeId(typeId, 0);
750 }
751
752 // Returns true if 'typeId' is or contains a scalar type declared with 'typeOp'
753 // of width 'width'. The 'width' is only consumed for int and float types.
754 // Returns false otherwise.
containsType(Id typeId,spv::Op typeOp,unsigned int width) const755 bool Builder::containsType(Id typeId, spv::Op typeOp, unsigned int width) const
756 {
757 const Instruction& instr = *module.getInstruction(typeId);
758
759 Op typeClass = instr.getOpCode();
760 switch (typeClass)
761 {
762 case OpTypeInt:
763 case OpTypeFloat:
764 return typeClass == typeOp && instr.getImmediateOperand(0) == width;
765 case OpTypeStruct:
766 for (int m = 0; m < instr.getNumOperands(); ++m) {
767 if (containsType(instr.getIdOperand(m), typeOp, width))
768 return true;
769 }
770 return false;
771 case OpTypePointer:
772 return false;
773 case OpTypeVector:
774 case OpTypeMatrix:
775 case OpTypeArray:
776 case OpTypeRuntimeArray:
777 return containsType(getContainedTypeId(typeId), typeOp, width);
778 default:
779 return typeClass == typeOp;
780 }
781 }
782
783 // return true if the type is a pointer to PhysicalStorageBufferEXT or an
784 // array of such pointers. These require restrict/aliased decorations.
containsPhysicalStorageBufferOrArray(Id typeId) const785 bool Builder::containsPhysicalStorageBufferOrArray(Id typeId) const
786 {
787 const Instruction& instr = *module.getInstruction(typeId);
788
789 Op typeClass = instr.getOpCode();
790 switch (typeClass)
791 {
792 case OpTypePointer:
793 return getTypeStorageClass(typeId) == StorageClassPhysicalStorageBufferEXT;
794 case OpTypeArray:
795 return containsPhysicalStorageBufferOrArray(getContainedTypeId(typeId));
796 default:
797 return false;
798 }
799 }
800
801 // See if a scalar constant of this type has already been created, so it
802 // can be reused rather than duplicated. (Required by the specification).
findScalarConstant(Op typeClass,Op opcode,Id typeId,unsigned value)803 Id Builder::findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned value)
804 {
805 Instruction* constant;
806 for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
807 constant = groupedConstants[typeClass][i];
808 if (constant->getOpCode() == opcode &&
809 constant->getTypeId() == typeId &&
810 constant->getImmediateOperand(0) == value)
811 return constant->getResultId();
812 }
813
814 return 0;
815 }
816
817 // Version of findScalarConstant (see above) for scalars that take two operands (e.g. a 'double' or 'int64').
findScalarConstant(Op typeClass,Op opcode,Id typeId,unsigned v1,unsigned v2)818 Id Builder::findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned v1, unsigned v2)
819 {
820 Instruction* constant;
821 for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
822 constant = groupedConstants[typeClass][i];
823 if (constant->getOpCode() == opcode &&
824 constant->getTypeId() == typeId &&
825 constant->getImmediateOperand(0) == v1 &&
826 constant->getImmediateOperand(1) == v2)
827 return constant->getResultId();
828 }
829
830 return 0;
831 }
832
833 // Return true if consuming 'opcode' means consuming a constant.
834 // "constant" here means after final transform to executable code,
835 // the value consumed will be a constant, so includes specialization.
isConstantOpCode(Op opcode) const836 bool Builder::isConstantOpCode(Op opcode) const
837 {
838 switch (opcode) {
839 case OpUndef:
840 case OpConstantTrue:
841 case OpConstantFalse:
842 case OpConstant:
843 case OpConstantComposite:
844 case OpConstantSampler:
845 case OpConstantNull:
846 case OpSpecConstantTrue:
847 case OpSpecConstantFalse:
848 case OpSpecConstant:
849 case OpSpecConstantComposite:
850 case OpSpecConstantOp:
851 return true;
852 default:
853 return false;
854 }
855 }
856
857 // Return true if consuming 'opcode' means consuming a specialization constant.
isSpecConstantOpCode(Op opcode) const858 bool Builder::isSpecConstantOpCode(Op opcode) const
859 {
860 switch (opcode) {
861 case OpSpecConstantTrue:
862 case OpSpecConstantFalse:
863 case OpSpecConstant:
864 case OpSpecConstantComposite:
865 case OpSpecConstantOp:
866 return true;
867 default:
868 return false;
869 }
870 }
871
makeBoolConstant(bool b,bool specConstant)872 Id Builder::makeBoolConstant(bool b, bool specConstant)
873 {
874 Id typeId = makeBoolType();
875 Instruction* constant;
876 Op opcode = specConstant ? (b ? OpSpecConstantTrue : OpSpecConstantFalse) : (b ? OpConstantTrue : OpConstantFalse);
877
878 // See if we already made it. Applies only to regular constants, because specialization constants
879 // must remain distinct for the purpose of applying a SpecId decoration.
880 if (! specConstant) {
881 Id existing = 0;
882 for (int i = 0; i < (int)groupedConstants[OpTypeBool].size(); ++i) {
883 constant = groupedConstants[OpTypeBool][i];
884 if (constant->getTypeId() == typeId && constant->getOpCode() == opcode)
885 existing = constant->getResultId();
886 }
887
888 if (existing)
889 return existing;
890 }
891
892 // Make it
893 Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
894 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
895 groupedConstants[OpTypeBool].push_back(c);
896 module.mapInstruction(c);
897
898 return c->getResultId();
899 }
900
makeIntConstant(Id typeId,unsigned value,bool specConstant)901 Id Builder::makeIntConstant(Id typeId, unsigned value, bool specConstant)
902 {
903 Op opcode = specConstant ? OpSpecConstant : OpConstant;
904
905 // See if we already made it. Applies only to regular constants, because specialization constants
906 // must remain distinct for the purpose of applying a SpecId decoration.
907 if (! specConstant) {
908 Id existing = findScalarConstant(OpTypeInt, opcode, typeId, value);
909 if (existing)
910 return existing;
911 }
912
913 Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
914 c->addImmediateOperand(value);
915 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
916 groupedConstants[OpTypeInt].push_back(c);
917 module.mapInstruction(c);
918
919 return c->getResultId();
920 }
921
makeInt64Constant(Id typeId,unsigned long long value,bool specConstant)922 Id Builder::makeInt64Constant(Id typeId, unsigned long long value, bool specConstant)
923 {
924 Op opcode = specConstant ? OpSpecConstant : OpConstant;
925
926 unsigned op1 = value & 0xFFFFFFFF;
927 unsigned op2 = value >> 32;
928
929 // See if we already made it. Applies only to regular constants, because specialization constants
930 // must remain distinct for the purpose of applying a SpecId decoration.
931 if (! specConstant) {
932 Id existing = findScalarConstant(OpTypeInt, opcode, typeId, op1, op2);
933 if (existing)
934 return existing;
935 }
936
937 Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
938 c->addImmediateOperand(op1);
939 c->addImmediateOperand(op2);
940 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
941 groupedConstants[OpTypeInt].push_back(c);
942 module.mapInstruction(c);
943
944 return c->getResultId();
945 }
946
makeFloatConstant(float f,bool specConstant)947 Id Builder::makeFloatConstant(float f, bool specConstant)
948 {
949 Op opcode = specConstant ? OpSpecConstant : OpConstant;
950 Id typeId = makeFloatType(32);
951 union { float fl; unsigned int ui; } u;
952 u.fl = f;
953 unsigned value = u.ui;
954
955 // See if we already made it. Applies only to regular constants, because specialization constants
956 // must remain distinct for the purpose of applying a SpecId decoration.
957 if (! specConstant) {
958 Id existing = findScalarConstant(OpTypeFloat, opcode, typeId, value);
959 if (existing)
960 return existing;
961 }
962
963 Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
964 c->addImmediateOperand(value);
965 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
966 groupedConstants[OpTypeFloat].push_back(c);
967 module.mapInstruction(c);
968
969 return c->getResultId();
970 }
971
makeDoubleConstant(double d,bool specConstant)972 Id Builder::makeDoubleConstant(double d, bool specConstant)
973 {
974 #ifdef GLSLANG_WEB
975 assert(0);
976 return NoResult;
977 #else
978 Op opcode = specConstant ? OpSpecConstant : OpConstant;
979 Id typeId = makeFloatType(64);
980 union { double db; unsigned long long ull; } u;
981 u.db = d;
982 unsigned long long value = u.ull;
983 unsigned op1 = value & 0xFFFFFFFF;
984 unsigned op2 = value >> 32;
985
986 // See if we already made it. Applies only to regular constants, because specialization constants
987 // must remain distinct for the purpose of applying a SpecId decoration.
988 if (! specConstant) {
989 Id existing = findScalarConstant(OpTypeFloat, opcode, typeId, op1, op2);
990 if (existing)
991 return existing;
992 }
993
994 Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
995 c->addImmediateOperand(op1);
996 c->addImmediateOperand(op2);
997 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
998 groupedConstants[OpTypeFloat].push_back(c);
999 module.mapInstruction(c);
1000
1001 return c->getResultId();
1002 #endif
1003 }
1004
makeFloat16Constant(float f16,bool specConstant)1005 Id Builder::makeFloat16Constant(float f16, bool specConstant)
1006 {
1007 #ifdef GLSLANG_WEB
1008 assert(0);
1009 return NoResult;
1010 #else
1011 Op opcode = specConstant ? OpSpecConstant : OpConstant;
1012 Id typeId = makeFloatType(16);
1013
1014 spvutils::HexFloat<spvutils::FloatProxy<float>> fVal(f16);
1015 spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>> f16Val(0);
1016 fVal.castTo(f16Val, spvutils::kRoundToZero);
1017
1018 unsigned value = f16Val.value().getAsFloat().get_value();
1019
1020 // See if we already made it. Applies only to regular constants, because specialization constants
1021 // must remain distinct for the purpose of applying a SpecId decoration.
1022 if (!specConstant) {
1023 Id existing = findScalarConstant(OpTypeFloat, opcode, typeId, value);
1024 if (existing)
1025 return existing;
1026 }
1027
1028 Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
1029 c->addImmediateOperand(value);
1030 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
1031 groupedConstants[OpTypeFloat].push_back(c);
1032 module.mapInstruction(c);
1033
1034 return c->getResultId();
1035 #endif
1036 }
1037
makeFpConstant(Id type,double d,bool specConstant)1038 Id Builder::makeFpConstant(Id type, double d, bool specConstant)
1039 {
1040 #ifdef GLSLANG_WEB
1041 const int width = 32;
1042 assert(width == getScalarTypeWidth(type));
1043 #else
1044 const int width = getScalarTypeWidth(type);
1045 #endif
1046
1047 assert(isFloatType(type));
1048
1049 switch (width) {
1050 case 16:
1051 return makeFloat16Constant((float)d, specConstant);
1052 case 32:
1053 return makeFloatConstant((float)d, specConstant);
1054 case 64:
1055 return makeDoubleConstant(d, specConstant);
1056 default:
1057 break;
1058 }
1059
1060 assert(false);
1061 return NoResult;
1062 }
1063
findCompositeConstant(Op typeClass,Id typeId,const std::vector<Id> & comps)1064 Id Builder::findCompositeConstant(Op typeClass, Id typeId, const std::vector<Id>& comps)
1065 {
1066 Instruction* constant = 0;
1067 bool found = false;
1068 for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
1069 constant = groupedConstants[typeClass][i];
1070
1071 if (constant->getTypeId() != typeId)
1072 continue;
1073
1074 // same contents?
1075 bool mismatch = false;
1076 for (int op = 0; op < constant->getNumOperands(); ++op) {
1077 if (constant->getIdOperand(op) != comps[op]) {
1078 mismatch = true;
1079 break;
1080 }
1081 }
1082 if (! mismatch) {
1083 found = true;
1084 break;
1085 }
1086 }
1087
1088 return found ? constant->getResultId() : NoResult;
1089 }
1090
findStructConstant(Id typeId,const std::vector<Id> & comps)1091 Id Builder::findStructConstant(Id typeId, const std::vector<Id>& comps)
1092 {
1093 Instruction* constant = 0;
1094 bool found = false;
1095 for (int i = 0; i < (int)groupedStructConstants[typeId].size(); ++i) {
1096 constant = groupedStructConstants[typeId][i];
1097
1098 // same contents?
1099 bool mismatch = false;
1100 for (int op = 0; op < constant->getNumOperands(); ++op) {
1101 if (constant->getIdOperand(op) != comps[op]) {
1102 mismatch = true;
1103 break;
1104 }
1105 }
1106 if (! mismatch) {
1107 found = true;
1108 break;
1109 }
1110 }
1111
1112 return found ? constant->getResultId() : NoResult;
1113 }
1114
1115 // Comments in header
makeCompositeConstant(Id typeId,const std::vector<Id> & members,bool specConstant)1116 Id Builder::makeCompositeConstant(Id typeId, const std::vector<Id>& members, bool specConstant)
1117 {
1118 Op opcode = specConstant ? OpSpecConstantComposite : OpConstantComposite;
1119 assert(typeId);
1120 Op typeClass = getTypeClass(typeId);
1121
1122 switch (typeClass) {
1123 case OpTypeVector:
1124 case OpTypeArray:
1125 case OpTypeMatrix:
1126 case OpTypeCooperativeMatrixNV:
1127 if (! specConstant) {
1128 Id existing = findCompositeConstant(typeClass, typeId, members);
1129 if (existing)
1130 return existing;
1131 }
1132 break;
1133 case OpTypeStruct:
1134 if (! specConstant) {
1135 Id existing = findStructConstant(typeId, members);
1136 if (existing)
1137 return existing;
1138 }
1139 break;
1140 default:
1141 assert(0);
1142 return makeFloatConstant(0.0);
1143 }
1144
1145 Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
1146 for (int op = 0; op < (int)members.size(); ++op)
1147 c->addIdOperand(members[op]);
1148 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
1149 if (typeClass == OpTypeStruct)
1150 groupedStructConstants[typeId].push_back(c);
1151 else
1152 groupedConstants[typeClass].push_back(c);
1153 module.mapInstruction(c);
1154
1155 return c->getResultId();
1156 }
1157
addEntryPoint(ExecutionModel model,Function * function,const char * name)1158 Instruction* Builder::addEntryPoint(ExecutionModel model, Function* function, const char* name)
1159 {
1160 Instruction* entryPoint = new Instruction(OpEntryPoint);
1161 entryPoint->addImmediateOperand(model);
1162 entryPoint->addIdOperand(function->getId());
1163 entryPoint->addStringOperand(name);
1164
1165 entryPoints.push_back(std::unique_ptr<Instruction>(entryPoint));
1166
1167 return entryPoint;
1168 }
1169
1170 // Currently relying on the fact that all 'value' of interest are small non-negative values.
addExecutionMode(Function * entryPoint,ExecutionMode mode,int value1,int value2,int value3)1171 void Builder::addExecutionMode(Function* entryPoint, ExecutionMode mode, int value1, int value2, int value3)
1172 {
1173 Instruction* instr = new Instruction(OpExecutionMode);
1174 instr->addIdOperand(entryPoint->getId());
1175 instr->addImmediateOperand(mode);
1176 if (value1 >= 0)
1177 instr->addImmediateOperand(value1);
1178 if (value2 >= 0)
1179 instr->addImmediateOperand(value2);
1180 if (value3 >= 0)
1181 instr->addImmediateOperand(value3);
1182
1183 executionModes.push_back(std::unique_ptr<Instruction>(instr));
1184 }
1185
addName(Id id,const char * string)1186 void Builder::addName(Id id, const char* string)
1187 {
1188 Instruction* name = new Instruction(OpName);
1189 name->addIdOperand(id);
1190 name->addStringOperand(string);
1191
1192 names.push_back(std::unique_ptr<Instruction>(name));
1193 }
1194
addMemberName(Id id,int memberNumber,const char * string)1195 void Builder::addMemberName(Id id, int memberNumber, const char* string)
1196 {
1197 Instruction* name = new Instruction(OpMemberName);
1198 name->addIdOperand(id);
1199 name->addImmediateOperand(memberNumber);
1200 name->addStringOperand(string);
1201
1202 names.push_back(std::unique_ptr<Instruction>(name));
1203 }
1204
addDecoration(Id id,Decoration decoration,int num)1205 void Builder::addDecoration(Id id, Decoration decoration, int num)
1206 {
1207 if (decoration == spv::DecorationMax)
1208 return;
1209
1210 Instruction* dec = new Instruction(OpDecorate);
1211 dec->addIdOperand(id);
1212 dec->addImmediateOperand(decoration);
1213 if (num >= 0)
1214 dec->addImmediateOperand(num);
1215
1216 decorations.push_back(std::unique_ptr<Instruction>(dec));
1217 }
1218
addDecoration(Id id,Decoration decoration,const char * s)1219 void Builder::addDecoration(Id id, Decoration decoration, const char* s)
1220 {
1221 if (decoration == spv::DecorationMax)
1222 return;
1223
1224 Instruction* dec = new Instruction(OpDecorateStringGOOGLE);
1225 dec->addIdOperand(id);
1226 dec->addImmediateOperand(decoration);
1227 dec->addStringOperand(s);
1228
1229 decorations.push_back(std::unique_ptr<Instruction>(dec));
1230 }
1231
addDecorationId(Id id,Decoration decoration,Id idDecoration)1232 void Builder::addDecorationId(Id id, Decoration decoration, Id idDecoration)
1233 {
1234 if (decoration == spv::DecorationMax)
1235 return;
1236
1237 Instruction* dec = new Instruction(OpDecorateId);
1238 dec->addIdOperand(id);
1239 dec->addImmediateOperand(decoration);
1240 dec->addIdOperand(idDecoration);
1241
1242 decorations.push_back(std::unique_ptr<Instruction>(dec));
1243 }
1244
addMemberDecoration(Id id,unsigned int member,Decoration decoration,int num)1245 void Builder::addMemberDecoration(Id id, unsigned int member, Decoration decoration, int num)
1246 {
1247 if (decoration == spv::DecorationMax)
1248 return;
1249
1250 Instruction* dec = new Instruction(OpMemberDecorate);
1251 dec->addIdOperand(id);
1252 dec->addImmediateOperand(member);
1253 dec->addImmediateOperand(decoration);
1254 if (num >= 0)
1255 dec->addImmediateOperand(num);
1256
1257 decorations.push_back(std::unique_ptr<Instruction>(dec));
1258 }
1259
addMemberDecoration(Id id,unsigned int member,Decoration decoration,const char * s)1260 void Builder::addMemberDecoration(Id id, unsigned int member, Decoration decoration, const char *s)
1261 {
1262 if (decoration == spv::DecorationMax)
1263 return;
1264
1265 Instruction* dec = new Instruction(OpMemberDecorateStringGOOGLE);
1266 dec->addIdOperand(id);
1267 dec->addImmediateOperand(member);
1268 dec->addImmediateOperand(decoration);
1269 dec->addStringOperand(s);
1270
1271 decorations.push_back(std::unique_ptr<Instruction>(dec));
1272 }
1273
1274 // Comments in header
makeEntryPoint(const char * entryPoint)1275 Function* Builder::makeEntryPoint(const char* entryPoint)
1276 {
1277 assert(! entryPointFunction);
1278
1279 Block* entry;
1280 std::vector<Id> params;
1281 std::vector<std::vector<Decoration>> decorations;
1282
1283 entryPointFunction = makeFunctionEntry(NoPrecision, makeVoidType(), entryPoint, params, decorations, &entry);
1284
1285 return entryPointFunction;
1286 }
1287
1288 // Comments in header
makeFunctionEntry(Decoration precision,Id returnType,const char * name,const std::vector<Id> & paramTypes,const std::vector<std::vector<Decoration>> & decorations,Block ** entry)1289 Function* Builder::makeFunctionEntry(Decoration precision, Id returnType, const char* name,
1290 const std::vector<Id>& paramTypes,
1291 const std::vector<std::vector<Decoration>>& decorations, Block **entry)
1292 {
1293 // Make the function and initial instructions in it
1294 Id typeId = makeFunctionType(returnType, paramTypes);
1295 Id firstParamId = paramTypes.size() == 0 ? 0 : getUniqueIds((int)paramTypes.size());
1296 Function* function = new Function(getUniqueId(), returnType, typeId, firstParamId, module);
1297
1298 // Set up the precisions
1299 setPrecision(function->getId(), precision);
1300 for (unsigned p = 0; p < (unsigned)decorations.size(); ++p) {
1301 for (int d = 0; d < (int)decorations[p].size(); ++d)
1302 addDecoration(firstParamId + p, decorations[p][d]);
1303 }
1304
1305 // CFG
1306 if (entry) {
1307 *entry = new Block(getUniqueId(), *function);
1308 function->addBlock(*entry);
1309 setBuildPoint(*entry);
1310 }
1311
1312 if (name)
1313 addName(function->getId(), name);
1314
1315 functions.push_back(std::unique_ptr<Function>(function));
1316
1317 return function;
1318 }
1319
1320 // Comments in header
makeReturn(bool implicit,Id retVal)1321 void Builder::makeReturn(bool implicit, Id retVal)
1322 {
1323 if (retVal) {
1324 Instruction* inst = new Instruction(NoResult, NoType, OpReturnValue);
1325 inst->addIdOperand(retVal);
1326 buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
1327 } else
1328 buildPoint->addInstruction(std::unique_ptr<Instruction>(new Instruction(NoResult, NoType, OpReturn)));
1329
1330 if (! implicit)
1331 createAndSetNoPredecessorBlock("post-return");
1332 }
1333
1334 // Comments in header
leaveFunction()1335 void Builder::leaveFunction()
1336 {
1337 Block* block = buildPoint;
1338 Function& function = buildPoint->getParent();
1339 assert(block);
1340
1341 // If our function did not contain a return, add a return void now.
1342 if (! block->isTerminated()) {
1343 if (function.getReturnType() == makeVoidType())
1344 makeReturn(true);
1345 else {
1346 makeReturn(true, createUndefined(function.getReturnType()));
1347 }
1348 }
1349 }
1350
1351 // Comments in header
makeDiscard()1352 void Builder::makeDiscard()
1353 {
1354 buildPoint->addInstruction(std::unique_ptr<Instruction>(new Instruction(OpKill)));
1355 createAndSetNoPredecessorBlock("post-discard");
1356 }
1357
1358 // Comments in header
createVariable(StorageClass storageClass,Id type,const char * name,Id initializer)1359 Id Builder::createVariable(StorageClass storageClass, Id type, const char* name, Id initializer)
1360 {
1361 Id pointerType = makePointer(storageClass, type);
1362 Instruction* inst = new Instruction(getUniqueId(), pointerType, OpVariable);
1363 inst->addImmediateOperand(storageClass);
1364 if (initializer != NoResult)
1365 inst->addIdOperand(initializer);
1366
1367 switch (storageClass) {
1368 case StorageClassFunction:
1369 // Validation rules require the declaration in the entry block
1370 buildPoint->getParent().addLocalVariable(std::unique_ptr<Instruction>(inst));
1371 break;
1372
1373 default:
1374 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(inst));
1375 module.mapInstruction(inst);
1376 break;
1377 }
1378
1379 if (name)
1380 addName(inst->getResultId(), name);
1381
1382 return inst->getResultId();
1383 }
1384
1385 // Comments in header
createUndefined(Id type)1386 Id Builder::createUndefined(Id type)
1387 {
1388 Instruction* inst = new Instruction(getUniqueId(), type, OpUndef);
1389 buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
1390 return inst->getResultId();
1391 }
1392
1393 // av/vis/nonprivate are unnecessary and illegal for some storage classes.
sanitizeMemoryAccessForStorageClass(spv::MemoryAccessMask memoryAccess,StorageClass sc) const1394 spv::MemoryAccessMask Builder::sanitizeMemoryAccessForStorageClass(spv::MemoryAccessMask memoryAccess, StorageClass sc)
1395 const
1396 {
1397 switch (sc) {
1398 case spv::StorageClassUniform:
1399 case spv::StorageClassWorkgroup:
1400 case spv::StorageClassStorageBuffer:
1401 case spv::StorageClassPhysicalStorageBufferEXT:
1402 break;
1403 default:
1404 memoryAccess = spv::MemoryAccessMask(memoryAccess &
1405 ~(spv::MemoryAccessMakePointerAvailableKHRMask |
1406 spv::MemoryAccessMakePointerVisibleKHRMask |
1407 spv::MemoryAccessNonPrivatePointerKHRMask));
1408 break;
1409 }
1410 return memoryAccess;
1411 }
1412
1413 // Comments in header
createStore(Id rValue,Id lValue,spv::MemoryAccessMask memoryAccess,spv::Scope scope,unsigned int alignment)1414 void Builder::createStore(Id rValue, Id lValue, spv::MemoryAccessMask memoryAccess, spv::Scope scope,
1415 unsigned int alignment)
1416 {
1417 Instruction* store = new Instruction(OpStore);
1418 store->addIdOperand(lValue);
1419 store->addIdOperand(rValue);
1420
1421 memoryAccess = sanitizeMemoryAccessForStorageClass(memoryAccess, getStorageClass(lValue));
1422
1423 if (memoryAccess != MemoryAccessMaskNone) {
1424 store->addImmediateOperand(memoryAccess);
1425 if (memoryAccess & spv::MemoryAccessAlignedMask) {
1426 store->addImmediateOperand(alignment);
1427 }
1428 if (memoryAccess & spv::MemoryAccessMakePointerAvailableKHRMask) {
1429 store->addIdOperand(makeUintConstant(scope));
1430 }
1431 }
1432
1433 buildPoint->addInstruction(std::unique_ptr<Instruction>(store));
1434 }
1435
1436 // Comments in header
createLoad(Id lValue,spv::MemoryAccessMask memoryAccess,spv::Scope scope,unsigned int alignment)1437 Id Builder::createLoad(Id lValue, spv::MemoryAccessMask memoryAccess, spv::Scope scope, unsigned int alignment)
1438 {
1439 Instruction* load = new Instruction(getUniqueId(), getDerefTypeId(lValue), OpLoad);
1440 load->addIdOperand(lValue);
1441
1442 memoryAccess = sanitizeMemoryAccessForStorageClass(memoryAccess, getStorageClass(lValue));
1443
1444 if (memoryAccess != MemoryAccessMaskNone) {
1445 load->addImmediateOperand(memoryAccess);
1446 if (memoryAccess & spv::MemoryAccessAlignedMask) {
1447 load->addImmediateOperand(alignment);
1448 }
1449 if (memoryAccess & spv::MemoryAccessMakePointerVisibleKHRMask) {
1450 load->addIdOperand(makeUintConstant(scope));
1451 }
1452 }
1453
1454 buildPoint->addInstruction(std::unique_ptr<Instruction>(load));
1455
1456 return load->getResultId();
1457 }
1458
1459 // Comments in header
createAccessChain(StorageClass storageClass,Id base,const std::vector<Id> & offsets)1460 Id Builder::createAccessChain(StorageClass storageClass, Id base, const std::vector<Id>& offsets)
1461 {
1462 // Figure out the final resulting type.
1463 spv::Id typeId = getTypeId(base);
1464 assert(isPointerType(typeId) && offsets.size() > 0);
1465 typeId = getContainedTypeId(typeId);
1466 for (int i = 0; i < (int)offsets.size(); ++i) {
1467 if (isStructType(typeId)) {
1468 assert(isConstantScalar(offsets[i]));
1469 typeId = getContainedTypeId(typeId, getConstantScalar(offsets[i]));
1470 } else
1471 typeId = getContainedTypeId(typeId, offsets[i]);
1472 }
1473 typeId = makePointer(storageClass, typeId);
1474
1475 // Make the instruction
1476 Instruction* chain = new Instruction(getUniqueId(), typeId, OpAccessChain);
1477 chain->addIdOperand(base);
1478 for (int i = 0; i < (int)offsets.size(); ++i)
1479 chain->addIdOperand(offsets[i]);
1480 buildPoint->addInstruction(std::unique_ptr<Instruction>(chain));
1481
1482 return chain->getResultId();
1483 }
1484
createArrayLength(Id base,unsigned int member)1485 Id Builder::createArrayLength(Id base, unsigned int member)
1486 {
1487 spv::Id intType = makeUintType(32);
1488 Instruction* length = new Instruction(getUniqueId(), intType, OpArrayLength);
1489 length->addIdOperand(base);
1490 length->addImmediateOperand(member);
1491 buildPoint->addInstruction(std::unique_ptr<Instruction>(length));
1492
1493 return length->getResultId();
1494 }
1495
createCooperativeMatrixLength(Id type)1496 Id Builder::createCooperativeMatrixLength(Id type)
1497 {
1498 spv::Id intType = makeUintType(32);
1499
1500 // Generate code for spec constants if in spec constant operation
1501 // generation mode.
1502 if (generatingOpCodeForSpecConst) {
1503 return createSpecConstantOp(OpCooperativeMatrixLengthNV, intType, std::vector<Id>(1, type), std::vector<Id>());
1504 }
1505
1506 Instruction* length = new Instruction(getUniqueId(), intType, OpCooperativeMatrixLengthNV);
1507 length->addIdOperand(type);
1508 buildPoint->addInstruction(std::unique_ptr<Instruction>(length));
1509
1510 return length->getResultId();
1511 }
1512
createCompositeExtract(Id composite,Id typeId,unsigned index)1513 Id Builder::createCompositeExtract(Id composite, Id typeId, unsigned index)
1514 {
1515 // Generate code for spec constants if in spec constant operation
1516 // generation mode.
1517 if (generatingOpCodeForSpecConst) {
1518 return createSpecConstantOp(OpCompositeExtract, typeId, std::vector<Id>(1, composite),
1519 std::vector<Id>(1, index));
1520 }
1521 Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
1522 extract->addIdOperand(composite);
1523 extract->addImmediateOperand(index);
1524 buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
1525
1526 return extract->getResultId();
1527 }
1528
createCompositeExtract(Id composite,Id typeId,const std::vector<unsigned> & indexes)1529 Id Builder::createCompositeExtract(Id composite, Id typeId, const std::vector<unsigned>& indexes)
1530 {
1531 // Generate code for spec constants if in spec constant operation
1532 // generation mode.
1533 if (generatingOpCodeForSpecConst) {
1534 return createSpecConstantOp(OpCompositeExtract, typeId, std::vector<Id>(1, composite), indexes);
1535 }
1536 Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
1537 extract->addIdOperand(composite);
1538 for (int i = 0; i < (int)indexes.size(); ++i)
1539 extract->addImmediateOperand(indexes[i]);
1540 buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
1541
1542 return extract->getResultId();
1543 }
1544
createCompositeInsert(Id object,Id composite,Id typeId,unsigned index)1545 Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, unsigned index)
1546 {
1547 Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
1548 insert->addIdOperand(object);
1549 insert->addIdOperand(composite);
1550 insert->addImmediateOperand(index);
1551 buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
1552
1553 return insert->getResultId();
1554 }
1555
createCompositeInsert(Id object,Id composite,Id typeId,const std::vector<unsigned> & indexes)1556 Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, const std::vector<unsigned>& indexes)
1557 {
1558 Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
1559 insert->addIdOperand(object);
1560 insert->addIdOperand(composite);
1561 for (int i = 0; i < (int)indexes.size(); ++i)
1562 insert->addImmediateOperand(indexes[i]);
1563 buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
1564
1565 return insert->getResultId();
1566 }
1567
createVectorExtractDynamic(Id vector,Id typeId,Id componentIndex)1568 Id Builder::createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex)
1569 {
1570 Instruction* extract = new Instruction(getUniqueId(), typeId, OpVectorExtractDynamic);
1571 extract->addIdOperand(vector);
1572 extract->addIdOperand(componentIndex);
1573 buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
1574
1575 return extract->getResultId();
1576 }
1577
createVectorInsertDynamic(Id vector,Id typeId,Id component,Id componentIndex)1578 Id Builder::createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex)
1579 {
1580 Instruction* insert = new Instruction(getUniqueId(), typeId, OpVectorInsertDynamic);
1581 insert->addIdOperand(vector);
1582 insert->addIdOperand(component);
1583 insert->addIdOperand(componentIndex);
1584 buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
1585
1586 return insert->getResultId();
1587 }
1588
1589 // An opcode that has no operands, no result id, and no type
createNoResultOp(Op opCode)1590 void Builder::createNoResultOp(Op opCode)
1591 {
1592 Instruction* op = new Instruction(opCode);
1593 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1594 }
1595
1596 // An opcode that has one id operand, no result id, and no type
createNoResultOp(Op opCode,Id operand)1597 void Builder::createNoResultOp(Op opCode, Id operand)
1598 {
1599 Instruction* op = new Instruction(opCode);
1600 op->addIdOperand(operand);
1601 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1602 }
1603
1604 // An opcode that has one or more operands, no result id, and no type
createNoResultOp(Op opCode,const std::vector<Id> & operands)1605 void Builder::createNoResultOp(Op opCode, const std::vector<Id>& operands)
1606 {
1607 Instruction* op = new Instruction(opCode);
1608 for (auto it = operands.cbegin(); it != operands.cend(); ++it) {
1609 op->addIdOperand(*it);
1610 }
1611 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1612 }
1613
1614 // An opcode that has multiple operands, no result id, and no type
createNoResultOp(Op opCode,const std::vector<IdImmediate> & operands)1615 void Builder::createNoResultOp(Op opCode, const std::vector<IdImmediate>& operands)
1616 {
1617 Instruction* op = new Instruction(opCode);
1618 for (auto it = operands.cbegin(); it != operands.cend(); ++it) {
1619 if (it->isId)
1620 op->addIdOperand(it->word);
1621 else
1622 op->addImmediateOperand(it->word);
1623 }
1624 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1625 }
1626
createControlBarrier(Scope execution,Scope memory,MemorySemanticsMask semantics)1627 void Builder::createControlBarrier(Scope execution, Scope memory, MemorySemanticsMask semantics)
1628 {
1629 Instruction* op = new Instruction(OpControlBarrier);
1630 op->addIdOperand(makeUintConstant(execution));
1631 op->addIdOperand(makeUintConstant(memory));
1632 op->addIdOperand(makeUintConstant(semantics));
1633 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1634 }
1635
createMemoryBarrier(unsigned executionScope,unsigned memorySemantics)1636 void Builder::createMemoryBarrier(unsigned executionScope, unsigned memorySemantics)
1637 {
1638 Instruction* op = new Instruction(OpMemoryBarrier);
1639 op->addIdOperand(makeUintConstant(executionScope));
1640 op->addIdOperand(makeUintConstant(memorySemantics));
1641 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1642 }
1643
1644 // An opcode that has one operands, a result id, and a type
createUnaryOp(Op opCode,Id typeId,Id operand)1645 Id Builder::createUnaryOp(Op opCode, Id typeId, Id operand)
1646 {
1647 // Generate code for spec constants if in spec constant operation
1648 // generation mode.
1649 if (generatingOpCodeForSpecConst) {
1650 return createSpecConstantOp(opCode, typeId, std::vector<Id>(1, operand), std::vector<Id>());
1651 }
1652 Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
1653 op->addIdOperand(operand);
1654 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1655
1656 return op->getResultId();
1657 }
1658
createBinOp(Op opCode,Id typeId,Id left,Id right)1659 Id Builder::createBinOp(Op opCode, Id typeId, Id left, Id right)
1660 {
1661 // Generate code for spec constants if in spec constant operation
1662 // generation mode.
1663 if (generatingOpCodeForSpecConst) {
1664 std::vector<Id> operands(2);
1665 operands[0] = left; operands[1] = right;
1666 return createSpecConstantOp(opCode, typeId, operands, std::vector<Id>());
1667 }
1668 Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
1669 op->addIdOperand(left);
1670 op->addIdOperand(right);
1671 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1672
1673 return op->getResultId();
1674 }
1675
createTriOp(Op opCode,Id typeId,Id op1,Id op2,Id op3)1676 Id Builder::createTriOp(Op opCode, Id typeId, Id op1, Id op2, Id op3)
1677 {
1678 // Generate code for spec constants if in spec constant operation
1679 // generation mode.
1680 if (generatingOpCodeForSpecConst) {
1681 std::vector<Id> operands(3);
1682 operands[0] = op1;
1683 operands[1] = op2;
1684 operands[2] = op3;
1685 return createSpecConstantOp(
1686 opCode, typeId, operands, std::vector<Id>());
1687 }
1688 Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
1689 op->addIdOperand(op1);
1690 op->addIdOperand(op2);
1691 op->addIdOperand(op3);
1692 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1693
1694 return op->getResultId();
1695 }
1696
createOp(Op opCode,Id typeId,const std::vector<Id> & operands)1697 Id Builder::createOp(Op opCode, Id typeId, const std::vector<Id>& operands)
1698 {
1699 Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
1700 for (auto it = operands.cbegin(); it != operands.cend(); ++it)
1701 op->addIdOperand(*it);
1702 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1703
1704 return op->getResultId();
1705 }
1706
createOp(Op opCode,Id typeId,const std::vector<IdImmediate> & operands)1707 Id Builder::createOp(Op opCode, Id typeId, const std::vector<IdImmediate>& operands)
1708 {
1709 Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
1710 for (auto it = operands.cbegin(); it != operands.cend(); ++it) {
1711 if (it->isId)
1712 op->addIdOperand(it->word);
1713 else
1714 op->addImmediateOperand(it->word);
1715 }
1716 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1717
1718 return op->getResultId();
1719 }
1720
createSpecConstantOp(Op opCode,Id typeId,const std::vector<Id> & operands,const std::vector<unsigned> & literals)1721 Id Builder::createSpecConstantOp(Op opCode, Id typeId, const std::vector<Id>& operands,
1722 const std::vector<unsigned>& literals)
1723 {
1724 Instruction* op = new Instruction(getUniqueId(), typeId, OpSpecConstantOp);
1725 op->addImmediateOperand((unsigned) opCode);
1726 for (auto it = operands.cbegin(); it != operands.cend(); ++it)
1727 op->addIdOperand(*it);
1728 for (auto it = literals.cbegin(); it != literals.cend(); ++it)
1729 op->addImmediateOperand(*it);
1730 module.mapInstruction(op);
1731 constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(op));
1732
1733 return op->getResultId();
1734 }
1735
createFunctionCall(spv::Function * function,const std::vector<spv::Id> & args)1736 Id Builder::createFunctionCall(spv::Function* function, const std::vector<spv::Id>& args)
1737 {
1738 Instruction* op = new Instruction(getUniqueId(), function->getReturnType(), OpFunctionCall);
1739 op->addIdOperand(function->getId());
1740 for (int a = 0; a < (int)args.size(); ++a)
1741 op->addIdOperand(args[a]);
1742 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
1743
1744 return op->getResultId();
1745 }
1746
1747 // Comments in header
createRvalueSwizzle(Decoration precision,Id typeId,Id source,const std::vector<unsigned> & channels)1748 Id Builder::createRvalueSwizzle(Decoration precision, Id typeId, Id source, const std::vector<unsigned>& channels)
1749 {
1750 if (channels.size() == 1)
1751 return setPrecision(createCompositeExtract(source, typeId, channels.front()), precision);
1752
1753 if (generatingOpCodeForSpecConst) {
1754 std::vector<Id> operands(2);
1755 operands[0] = operands[1] = source;
1756 return setPrecision(createSpecConstantOp(OpVectorShuffle, typeId, operands, channels), precision);
1757 }
1758 Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
1759 assert(isVector(source));
1760 swizzle->addIdOperand(source);
1761 swizzle->addIdOperand(source);
1762 for (int i = 0; i < (int)channels.size(); ++i)
1763 swizzle->addImmediateOperand(channels[i]);
1764 buildPoint->addInstruction(std::unique_ptr<Instruction>(swizzle));
1765
1766 return setPrecision(swizzle->getResultId(), precision);
1767 }
1768
1769 // Comments in header
createLvalueSwizzle(Id typeId,Id target,Id source,const std::vector<unsigned> & channels)1770 Id Builder::createLvalueSwizzle(Id typeId, Id target, Id source, const std::vector<unsigned>& channels)
1771 {
1772 if (channels.size() == 1 && getNumComponents(source) == 1)
1773 return createCompositeInsert(source, target, typeId, channels.front());
1774
1775 Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
1776
1777 assert(isVector(target));
1778 swizzle->addIdOperand(target);
1779
1780 assert(getNumComponents(source) == (int)channels.size());
1781 assert(isVector(source));
1782 swizzle->addIdOperand(source);
1783
1784 // Set up an identity shuffle from the base value to the result value
1785 unsigned int components[4];
1786 int numTargetComponents = getNumComponents(target);
1787 for (int i = 0; i < numTargetComponents; ++i)
1788 components[i] = i;
1789
1790 // Punch in the l-value swizzle
1791 for (int i = 0; i < (int)channels.size(); ++i)
1792 components[channels[i]] = numTargetComponents + i;
1793
1794 // finish the instruction with these components selectors
1795 for (int i = 0; i < numTargetComponents; ++i)
1796 swizzle->addImmediateOperand(components[i]);
1797 buildPoint->addInstruction(std::unique_ptr<Instruction>(swizzle));
1798
1799 return swizzle->getResultId();
1800 }
1801
1802 // Comments in header
promoteScalar(Decoration precision,Id & left,Id & right)1803 void Builder::promoteScalar(Decoration precision, Id& left, Id& right)
1804 {
1805 int direction = getNumComponents(right) - getNumComponents(left);
1806
1807 if (direction > 0)
1808 left = smearScalar(precision, left, makeVectorType(getTypeId(left), getNumComponents(right)));
1809 else if (direction < 0)
1810 right = smearScalar(precision, right, makeVectorType(getTypeId(right), getNumComponents(left)));
1811
1812 return;
1813 }
1814
1815 // Comments in header
smearScalar(Decoration precision,Id scalar,Id vectorType)1816 Id Builder::smearScalar(Decoration precision, Id scalar, Id vectorType)
1817 {
1818 assert(getNumComponents(scalar) == 1);
1819 assert(getTypeId(scalar) == getScalarTypeId(vectorType));
1820
1821 int numComponents = getNumTypeComponents(vectorType);
1822 if (numComponents == 1)
1823 return scalar;
1824
1825 Instruction* smear = nullptr;
1826 if (generatingOpCodeForSpecConst) {
1827 auto members = std::vector<spv::Id>(numComponents, scalar);
1828 // Sometime even in spec-constant-op mode, the temporary vector created by
1829 // promoting a scalar might not be a spec constant. This should depend on
1830 // the scalar.
1831 // e.g.:
1832 // const vec2 spec_const_result = a_spec_const_vec2 + a_front_end_const_scalar;
1833 // In such cases, the temporary vector created from a_front_end_const_scalar
1834 // is not a spec constant vector, even though the binary operation node is marked
1835 // as 'specConstant' and we are in spec-constant-op mode.
1836 auto result_id = makeCompositeConstant(vectorType, members, isSpecConstant(scalar));
1837 smear = module.getInstruction(result_id);
1838 } else {
1839 smear = new Instruction(getUniqueId(), vectorType, OpCompositeConstruct);
1840 for (int c = 0; c < numComponents; ++c)
1841 smear->addIdOperand(scalar);
1842 buildPoint->addInstruction(std::unique_ptr<Instruction>(smear));
1843 }
1844
1845 return setPrecision(smear->getResultId(), precision);
1846 }
1847
1848 // Comments in header
createBuiltinCall(Id resultType,Id builtins,int entryPoint,const std::vector<Id> & args)1849 Id Builder::createBuiltinCall(Id resultType, Id builtins, int entryPoint, const std::vector<Id>& args)
1850 {
1851 Instruction* inst = new Instruction(getUniqueId(), resultType, OpExtInst);
1852 inst->addIdOperand(builtins);
1853 inst->addImmediateOperand(entryPoint);
1854 for (int arg = 0; arg < (int)args.size(); ++arg)
1855 inst->addIdOperand(args[arg]);
1856
1857 buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
1858
1859 return inst->getResultId();
1860 }
1861
1862 // Accept all parameters needed to create a texture instruction.
1863 // Create the correct instruction based on the inputs, and make the call.
createTextureCall(Decoration precision,Id resultType,bool sparse,bool fetch,bool proj,bool gather,bool noImplicitLod,const TextureParameters & parameters,ImageOperandsMask signExtensionMask)1864 Id Builder::createTextureCall(Decoration precision, Id resultType, bool sparse, bool fetch, bool proj, bool gather,
1865 bool noImplicitLod, const TextureParameters& parameters, ImageOperandsMask signExtensionMask)
1866 {
1867 static const int maxTextureArgs = 10;
1868 Id texArgs[maxTextureArgs] = {};
1869
1870 //
1871 // Set up the fixed arguments
1872 //
1873 int numArgs = 0;
1874 bool explicitLod = false;
1875 texArgs[numArgs++] = parameters.sampler;
1876 texArgs[numArgs++] = parameters.coords;
1877 if (parameters.Dref != NoResult)
1878 texArgs[numArgs++] = parameters.Dref;
1879 if (parameters.component != NoResult)
1880 texArgs[numArgs++] = parameters.component;
1881
1882 #ifndef GLSLANG_WEB
1883 if (parameters.granularity != NoResult)
1884 texArgs[numArgs++] = parameters.granularity;
1885 if (parameters.coarse != NoResult)
1886 texArgs[numArgs++] = parameters.coarse;
1887 #endif
1888
1889 //
1890 // Set up the optional arguments
1891 //
1892 int optArgNum = numArgs; // track which operand, if it exists, is the mask of optional arguments
1893 ++numArgs; // speculatively make room for the mask operand
1894 ImageOperandsMask mask = ImageOperandsMaskNone; // the mask operand
1895 if (parameters.bias) {
1896 mask = (ImageOperandsMask)(mask | ImageOperandsBiasMask);
1897 texArgs[numArgs++] = parameters.bias;
1898 }
1899 if (parameters.lod) {
1900 mask = (ImageOperandsMask)(mask | ImageOperandsLodMask);
1901 texArgs[numArgs++] = parameters.lod;
1902 explicitLod = true;
1903 } else if (parameters.gradX) {
1904 mask = (ImageOperandsMask)(mask | ImageOperandsGradMask);
1905 texArgs[numArgs++] = parameters.gradX;
1906 texArgs[numArgs++] = parameters.gradY;
1907 explicitLod = true;
1908 } else if (noImplicitLod && ! fetch && ! gather) {
1909 // have to explicitly use lod of 0 if not allowed to have them be implicit, and
1910 // we would otherwise be about to issue an implicit instruction
1911 mask = (ImageOperandsMask)(mask | ImageOperandsLodMask);
1912 texArgs[numArgs++] = makeFloatConstant(0.0);
1913 explicitLod = true;
1914 }
1915 if (parameters.offset) {
1916 if (isConstant(parameters.offset))
1917 mask = (ImageOperandsMask)(mask | ImageOperandsConstOffsetMask);
1918 else {
1919 addCapability(CapabilityImageGatherExtended);
1920 mask = (ImageOperandsMask)(mask | ImageOperandsOffsetMask);
1921 }
1922 texArgs[numArgs++] = parameters.offset;
1923 }
1924 if (parameters.offsets) {
1925 addCapability(CapabilityImageGatherExtended);
1926 mask = (ImageOperandsMask)(mask | ImageOperandsConstOffsetsMask);
1927 texArgs[numArgs++] = parameters.offsets;
1928 }
1929 #ifndef GLSLANG_WEB
1930 if (parameters.sample) {
1931 mask = (ImageOperandsMask)(mask | ImageOperandsSampleMask);
1932 texArgs[numArgs++] = parameters.sample;
1933 }
1934 if (parameters.lodClamp) {
1935 // capability if this bit is used
1936 addCapability(CapabilityMinLod);
1937
1938 mask = (ImageOperandsMask)(mask | ImageOperandsMinLodMask);
1939 texArgs[numArgs++] = parameters.lodClamp;
1940 }
1941 if (parameters.nonprivate) {
1942 mask = mask | ImageOperandsNonPrivateTexelKHRMask;
1943 }
1944 if (parameters.volatil) {
1945 mask = mask | ImageOperandsVolatileTexelKHRMask;
1946 }
1947 #endif
1948 mask = mask | signExtensionMask;
1949 if (mask == ImageOperandsMaskNone)
1950 --numArgs; // undo speculative reservation for the mask argument
1951 else
1952 texArgs[optArgNum] = mask;
1953
1954 //
1955 // Set up the instruction
1956 //
1957 Op opCode = OpNop; // All paths below need to set this
1958 if (fetch) {
1959 if (sparse)
1960 opCode = OpImageSparseFetch;
1961 else
1962 opCode = OpImageFetch;
1963 #ifndef GLSLANG_WEB
1964 } else if (parameters.granularity && parameters.coarse) {
1965 opCode = OpImageSampleFootprintNV;
1966 } else if (gather) {
1967 if (parameters.Dref)
1968 if (sparse)
1969 opCode = OpImageSparseDrefGather;
1970 else
1971 opCode = OpImageDrefGather;
1972 else
1973 if (sparse)
1974 opCode = OpImageSparseGather;
1975 else
1976 opCode = OpImageGather;
1977 #endif
1978 } else if (explicitLod) {
1979 if (parameters.Dref) {
1980 if (proj)
1981 if (sparse)
1982 opCode = OpImageSparseSampleProjDrefExplicitLod;
1983 else
1984 opCode = OpImageSampleProjDrefExplicitLod;
1985 else
1986 if (sparse)
1987 opCode = OpImageSparseSampleDrefExplicitLod;
1988 else
1989 opCode = OpImageSampleDrefExplicitLod;
1990 } else {
1991 if (proj)
1992 if (sparse)
1993 opCode = OpImageSparseSampleProjExplicitLod;
1994 else
1995 opCode = OpImageSampleProjExplicitLod;
1996 else
1997 if (sparse)
1998 opCode = OpImageSparseSampleExplicitLod;
1999 else
2000 opCode = OpImageSampleExplicitLod;
2001 }
2002 } else {
2003 if (parameters.Dref) {
2004 if (proj)
2005 if (sparse)
2006 opCode = OpImageSparseSampleProjDrefImplicitLod;
2007 else
2008 opCode = OpImageSampleProjDrefImplicitLod;
2009 else
2010 if (sparse)
2011 opCode = OpImageSparseSampleDrefImplicitLod;
2012 else
2013 opCode = OpImageSampleDrefImplicitLod;
2014 } else {
2015 if (proj)
2016 if (sparse)
2017 opCode = OpImageSparseSampleProjImplicitLod;
2018 else
2019 opCode = OpImageSampleProjImplicitLod;
2020 else
2021 if (sparse)
2022 opCode = OpImageSparseSampleImplicitLod;
2023 else
2024 opCode = OpImageSampleImplicitLod;
2025 }
2026 }
2027
2028 // See if the result type is expecting a smeared result.
2029 // This happens when a legacy shadow*() call is made, which
2030 // gets a vec4 back instead of a float.
2031 Id smearedType = resultType;
2032 if (! isScalarType(resultType)) {
2033 switch (opCode) {
2034 case OpImageSampleDrefImplicitLod:
2035 case OpImageSampleDrefExplicitLod:
2036 case OpImageSampleProjDrefImplicitLod:
2037 case OpImageSampleProjDrefExplicitLod:
2038 resultType = getScalarTypeId(resultType);
2039 break;
2040 default:
2041 break;
2042 }
2043 }
2044
2045 Id typeId0 = 0;
2046 Id typeId1 = 0;
2047
2048 if (sparse) {
2049 typeId0 = resultType;
2050 typeId1 = getDerefTypeId(parameters.texelOut);
2051 resultType = makeStructResultType(typeId0, typeId1);
2052 }
2053
2054 // Build the SPIR-V instruction
2055 Instruction* textureInst = new Instruction(getUniqueId(), resultType, opCode);
2056 for (int op = 0; op < optArgNum; ++op)
2057 textureInst->addIdOperand(texArgs[op]);
2058 if (optArgNum < numArgs)
2059 textureInst->addImmediateOperand(texArgs[optArgNum]);
2060 for (int op = optArgNum + 1; op < numArgs; ++op)
2061 textureInst->addIdOperand(texArgs[op]);
2062 setPrecision(textureInst->getResultId(), precision);
2063 buildPoint->addInstruction(std::unique_ptr<Instruction>(textureInst));
2064
2065 Id resultId = textureInst->getResultId();
2066
2067 if (sparse) {
2068 // set capability
2069 addCapability(CapabilitySparseResidency);
2070
2071 // Decode the return type that was a special structure
2072 createStore(createCompositeExtract(resultId, typeId1, 1), parameters.texelOut);
2073 resultId = createCompositeExtract(resultId, typeId0, 0);
2074 setPrecision(resultId, precision);
2075 } else {
2076 // When a smear is needed, do it, as per what was computed
2077 // above when resultType was changed to a scalar type.
2078 if (resultType != smearedType)
2079 resultId = smearScalar(precision, resultId, smearedType);
2080 }
2081
2082 return resultId;
2083 }
2084
2085 // Comments in header
createTextureQueryCall(Op opCode,const TextureParameters & parameters,bool isUnsignedResult)2086 Id Builder::createTextureQueryCall(Op opCode, const TextureParameters& parameters, bool isUnsignedResult)
2087 {
2088 // Figure out the result type
2089 Id resultType = 0;
2090 switch (opCode) {
2091 case OpImageQuerySize:
2092 case OpImageQuerySizeLod:
2093 {
2094 int numComponents = 0;
2095 switch (getTypeDimensionality(getImageType(parameters.sampler))) {
2096 case Dim1D:
2097 case DimBuffer:
2098 numComponents = 1;
2099 break;
2100 case Dim2D:
2101 case DimCube:
2102 case DimRect:
2103 case DimSubpassData:
2104 numComponents = 2;
2105 break;
2106 case Dim3D:
2107 numComponents = 3;
2108 break;
2109
2110 default:
2111 assert(0);
2112 break;
2113 }
2114 if (isArrayedImageType(getImageType(parameters.sampler)))
2115 ++numComponents;
2116
2117 Id intType = isUnsignedResult ? makeUintType(32) : makeIntType(32);
2118 if (numComponents == 1)
2119 resultType = intType;
2120 else
2121 resultType = makeVectorType(intType, numComponents);
2122
2123 break;
2124 }
2125 case OpImageQueryLod:
2126 resultType = makeVectorType(getScalarTypeId(getTypeId(parameters.coords)), 2);
2127 break;
2128 case OpImageQueryLevels:
2129 case OpImageQuerySamples:
2130 resultType = isUnsignedResult ? makeUintType(32) : makeIntType(32);
2131 break;
2132 default:
2133 assert(0);
2134 break;
2135 }
2136
2137 Instruction* query = new Instruction(getUniqueId(), resultType, opCode);
2138 query->addIdOperand(parameters.sampler);
2139 if (parameters.coords)
2140 query->addIdOperand(parameters.coords);
2141 if (parameters.lod)
2142 query->addIdOperand(parameters.lod);
2143 buildPoint->addInstruction(std::unique_ptr<Instruction>(query));
2144 addCapability(CapabilityImageQuery);
2145
2146 return query->getResultId();
2147 }
2148
2149 // External comments in header.
2150 // Operates recursively to visit the composite's hierarchy.
createCompositeCompare(Decoration precision,Id value1,Id value2,bool equal)2151 Id Builder::createCompositeCompare(Decoration precision, Id value1, Id value2, bool equal)
2152 {
2153 Id boolType = makeBoolType();
2154 Id valueType = getTypeId(value1);
2155
2156 Id resultId = NoResult;
2157
2158 int numConstituents = getNumTypeConstituents(valueType);
2159
2160 // Scalars and Vectors
2161
2162 if (isScalarType(valueType) || isVectorType(valueType)) {
2163 assert(valueType == getTypeId(value2));
2164 // These just need a single comparison, just have
2165 // to figure out what it is.
2166 Op op;
2167 switch (getMostBasicTypeClass(valueType)) {
2168 case OpTypeFloat:
2169 op = equal ? OpFOrdEqual : OpFOrdNotEqual;
2170 break;
2171 case OpTypeInt:
2172 default:
2173 op = equal ? OpIEqual : OpINotEqual;
2174 break;
2175 case OpTypeBool:
2176 op = equal ? OpLogicalEqual : OpLogicalNotEqual;
2177 precision = NoPrecision;
2178 break;
2179 }
2180
2181 if (isScalarType(valueType)) {
2182 // scalar
2183 resultId = createBinOp(op, boolType, value1, value2);
2184 } else {
2185 // vector
2186 resultId = createBinOp(op, makeVectorType(boolType, numConstituents), value1, value2);
2187 setPrecision(resultId, precision);
2188 // reduce vector compares...
2189 resultId = createUnaryOp(equal ? OpAll : OpAny, boolType, resultId);
2190 }
2191
2192 return setPrecision(resultId, precision);
2193 }
2194
2195 // Only structs, arrays, and matrices should be left.
2196 // They share in common the reduction operation across their constituents.
2197 assert(isAggregateType(valueType) || isMatrixType(valueType));
2198
2199 // Compare each pair of constituents
2200 for (int constituent = 0; constituent < numConstituents; ++constituent) {
2201 std::vector<unsigned> indexes(1, constituent);
2202 Id constituentType1 = getContainedTypeId(getTypeId(value1), constituent);
2203 Id constituentType2 = getContainedTypeId(getTypeId(value2), constituent);
2204 Id constituent1 = createCompositeExtract(value1, constituentType1, indexes);
2205 Id constituent2 = createCompositeExtract(value2, constituentType2, indexes);
2206
2207 Id subResultId = createCompositeCompare(precision, constituent1, constituent2, equal);
2208
2209 if (constituent == 0)
2210 resultId = subResultId;
2211 else
2212 resultId = setPrecision(createBinOp(equal ? OpLogicalAnd : OpLogicalOr, boolType, resultId, subResultId),
2213 precision);
2214 }
2215
2216 return resultId;
2217 }
2218
2219 // OpCompositeConstruct
createCompositeConstruct(Id typeId,const std::vector<Id> & constituents)2220 Id Builder::createCompositeConstruct(Id typeId, const std::vector<Id>& constituents)
2221 {
2222 assert(isAggregateType(typeId) || (getNumTypeConstituents(typeId) > 1 &&
2223 getNumTypeConstituents(typeId) == (int)constituents.size()));
2224
2225 if (generatingOpCodeForSpecConst) {
2226 // Sometime, even in spec-constant-op mode, the constant composite to be
2227 // constructed may not be a specialization constant.
2228 // e.g.:
2229 // const mat2 m2 = mat2(a_spec_const, a_front_end_const, another_front_end_const, third_front_end_const);
2230 // The first column vector should be a spec constant one, as a_spec_const is a spec constant.
2231 // The second column vector should NOT be spec constant, as it does not contain any spec constants.
2232 // To handle such cases, we check the constituents of the constant vector to determine whether this
2233 // vector should be created as a spec constant.
2234 return makeCompositeConstant(typeId, constituents,
2235 std::any_of(constituents.begin(), constituents.end(),
2236 [&](spv::Id id) { return isSpecConstant(id); }));
2237 }
2238
2239 Instruction* op = new Instruction(getUniqueId(), typeId, OpCompositeConstruct);
2240 for (int c = 0; c < (int)constituents.size(); ++c)
2241 op->addIdOperand(constituents[c]);
2242 buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
2243
2244 return op->getResultId();
2245 }
2246
2247 // Vector or scalar constructor
createConstructor(Decoration precision,const std::vector<Id> & sources,Id resultTypeId)2248 Id Builder::createConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
2249 {
2250 Id result = NoResult;
2251 unsigned int numTargetComponents = getNumTypeComponents(resultTypeId);
2252 unsigned int targetComponent = 0;
2253
2254 // Special case: when calling a vector constructor with a single scalar
2255 // argument, smear the scalar
2256 if (sources.size() == 1 && isScalar(sources[0]) && numTargetComponents > 1)
2257 return smearScalar(precision, sources[0], resultTypeId);
2258
2259 // accumulate the arguments for OpCompositeConstruct
2260 std::vector<Id> constituents;
2261 Id scalarTypeId = getScalarTypeId(resultTypeId);
2262
2263 // lambda to store the result of visiting an argument component
2264 const auto latchResult = [&](Id comp) {
2265 if (numTargetComponents > 1)
2266 constituents.push_back(comp);
2267 else
2268 result = comp;
2269 ++targetComponent;
2270 };
2271
2272 // lambda to visit a vector argument's components
2273 const auto accumulateVectorConstituents = [&](Id sourceArg) {
2274 unsigned int sourceSize = getNumComponents(sourceArg);
2275 unsigned int sourcesToUse = sourceSize;
2276 if (sourcesToUse + targetComponent > numTargetComponents)
2277 sourcesToUse = numTargetComponents - targetComponent;
2278
2279 for (unsigned int s = 0; s < sourcesToUse; ++s) {
2280 std::vector<unsigned> swiz;
2281 swiz.push_back(s);
2282 latchResult(createRvalueSwizzle(precision, scalarTypeId, sourceArg, swiz));
2283 }
2284 };
2285
2286 // lambda to visit a matrix argument's components
2287 const auto accumulateMatrixConstituents = [&](Id sourceArg) {
2288 unsigned int sourceSize = getNumColumns(sourceArg) * getNumRows(sourceArg);
2289 unsigned int sourcesToUse = sourceSize;
2290 if (sourcesToUse + targetComponent > numTargetComponents)
2291 sourcesToUse = numTargetComponents - targetComponent;
2292
2293 int col = 0;
2294 int row = 0;
2295 for (unsigned int s = 0; s < sourcesToUse; ++s) {
2296 if (row >= getNumRows(sourceArg)) {
2297 row = 0;
2298 col++;
2299 }
2300 std::vector<Id> indexes;
2301 indexes.push_back(col);
2302 indexes.push_back(row);
2303 latchResult(createCompositeExtract(sourceArg, scalarTypeId, indexes));
2304 row++;
2305 }
2306 };
2307
2308 // Go through the source arguments, each one could have either
2309 // a single or multiple components to contribute.
2310 for (unsigned int i = 0; i < sources.size(); ++i) {
2311
2312 if (isScalar(sources[i]) || isPointer(sources[i]))
2313 latchResult(sources[i]);
2314 else if (isVector(sources[i]))
2315 accumulateVectorConstituents(sources[i]);
2316 else if (isMatrix(sources[i]))
2317 accumulateMatrixConstituents(sources[i]);
2318 else
2319 assert(0);
2320
2321 if (targetComponent >= numTargetComponents)
2322 break;
2323 }
2324
2325 // If the result is a vector, make it from the gathered constituents.
2326 if (constituents.size() > 0)
2327 result = createCompositeConstruct(resultTypeId, constituents);
2328
2329 return setPrecision(result, precision);
2330 }
2331
2332 // Comments in header
createMatrixConstructor(Decoration precision,const std::vector<Id> & sources,Id resultTypeId)2333 Id Builder::createMatrixConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
2334 {
2335 Id componentTypeId = getScalarTypeId(resultTypeId);
2336 int numCols = getTypeNumColumns(resultTypeId);
2337 int numRows = getTypeNumRows(resultTypeId);
2338
2339 Instruction* instr = module.getInstruction(componentTypeId);
2340 #ifdef GLSLANG_WEB
2341 const unsigned bitCount = 32;
2342 assert(bitCount == instr->getImmediateOperand(0));
2343 #else
2344 const unsigned bitCount = instr->getImmediateOperand(0);
2345 #endif
2346
2347 // Optimize matrix constructed from a bigger matrix
2348 if (isMatrix(sources[0]) && getNumColumns(sources[0]) >= numCols && getNumRows(sources[0]) >= numRows) {
2349 // To truncate the matrix to a smaller number of rows/columns, we need to:
2350 // 1. For each column, extract the column and truncate it to the required size using shuffle
2351 // 2. Assemble the resulting matrix from all columns
2352 Id matrix = sources[0];
2353 Id columnTypeId = getContainedTypeId(resultTypeId);
2354 Id sourceColumnTypeId = getContainedTypeId(getTypeId(matrix));
2355
2356 std::vector<unsigned> channels;
2357 for (int row = 0; row < numRows; ++row)
2358 channels.push_back(row);
2359
2360 std::vector<Id> matrixColumns;
2361 for (int col = 0; col < numCols; ++col) {
2362 std::vector<unsigned> indexes;
2363 indexes.push_back(col);
2364 Id colv = createCompositeExtract(matrix, sourceColumnTypeId, indexes);
2365 setPrecision(colv, precision);
2366
2367 if (numRows != getNumRows(matrix)) {
2368 matrixColumns.push_back(createRvalueSwizzle(precision, columnTypeId, colv, channels));
2369 } else {
2370 matrixColumns.push_back(colv);
2371 }
2372 }
2373
2374 return setPrecision(createCompositeConstruct(resultTypeId, matrixColumns), precision);
2375 }
2376
2377 // Otherwise, will use a two step process
2378 // 1. make a compile-time 2D array of values
2379 // 2. construct a matrix from that array
2380
2381 // Step 1.
2382
2383 // initialize the array to the identity matrix
2384 Id ids[maxMatrixSize][maxMatrixSize];
2385 Id one = (bitCount == 64 ? makeDoubleConstant(1.0) : makeFloatConstant(1.0));
2386 Id zero = (bitCount == 64 ? makeDoubleConstant(0.0) : makeFloatConstant(0.0));
2387 for (int col = 0; col < 4; ++col) {
2388 for (int row = 0; row < 4; ++row) {
2389 if (col == row)
2390 ids[col][row] = one;
2391 else
2392 ids[col][row] = zero;
2393 }
2394 }
2395
2396 // modify components as dictated by the arguments
2397 if (sources.size() == 1 && isScalar(sources[0])) {
2398 // a single scalar; resets the diagonals
2399 for (int col = 0; col < 4; ++col)
2400 ids[col][col] = sources[0];
2401 } else if (isMatrix(sources[0])) {
2402 // constructing from another matrix; copy over the parts that exist in both the argument and constructee
2403 Id matrix = sources[0];
2404 int minCols = std::min(numCols, getNumColumns(matrix));
2405 int minRows = std::min(numRows, getNumRows(matrix));
2406 for (int col = 0; col < minCols; ++col) {
2407 std::vector<unsigned> indexes;
2408 indexes.push_back(col);
2409 for (int row = 0; row < minRows; ++row) {
2410 indexes.push_back(row);
2411 ids[col][row] = createCompositeExtract(matrix, componentTypeId, indexes);
2412 indexes.pop_back();
2413 setPrecision(ids[col][row], precision);
2414 }
2415 }
2416 } else {
2417 // fill in the matrix in column-major order with whatever argument components are available
2418 int row = 0;
2419 int col = 0;
2420
2421 for (int arg = 0; arg < (int)sources.size(); ++arg) {
2422 Id argComp = sources[arg];
2423 for (int comp = 0; comp < getNumComponents(sources[arg]); ++comp) {
2424 if (getNumComponents(sources[arg]) > 1) {
2425 argComp = createCompositeExtract(sources[arg], componentTypeId, comp);
2426 setPrecision(argComp, precision);
2427 }
2428 ids[col][row++] = argComp;
2429 if (row == numRows) {
2430 row = 0;
2431 col++;
2432 }
2433 }
2434 }
2435 }
2436
2437 // Step 2: Construct a matrix from that array.
2438 // First make the column vectors, then make the matrix.
2439
2440 // make the column vectors
2441 Id columnTypeId = getContainedTypeId(resultTypeId);
2442 std::vector<Id> matrixColumns;
2443 for (int col = 0; col < numCols; ++col) {
2444 std::vector<Id> vectorComponents;
2445 for (int row = 0; row < numRows; ++row)
2446 vectorComponents.push_back(ids[col][row]);
2447 Id column = createCompositeConstruct(columnTypeId, vectorComponents);
2448 setPrecision(column, precision);
2449 matrixColumns.push_back(column);
2450 }
2451
2452 // make the matrix
2453 return setPrecision(createCompositeConstruct(resultTypeId, matrixColumns), precision);
2454 }
2455
2456 // Comments in header
If(Id cond,unsigned int ctrl,Builder & gb)2457 Builder::If::If(Id cond, unsigned int ctrl, Builder& gb) :
2458 builder(gb),
2459 condition(cond),
2460 control(ctrl),
2461 elseBlock(0)
2462 {
2463 function = &builder.getBuildPoint()->getParent();
2464
2465 // make the blocks, but only put the then-block into the function,
2466 // the else-block and merge-block will be added later, in order, after
2467 // earlier code is emitted
2468 thenBlock = new Block(builder.getUniqueId(), *function);
2469 mergeBlock = new Block(builder.getUniqueId(), *function);
2470
2471 // Save the current block, so that we can add in the flow control split when
2472 // makeEndIf is called.
2473 headerBlock = builder.getBuildPoint();
2474
2475 function->addBlock(thenBlock);
2476 builder.setBuildPoint(thenBlock);
2477 }
2478
2479 // Comments in header
makeBeginElse()2480 void Builder::If::makeBeginElse()
2481 {
2482 // Close out the "then" by having it jump to the mergeBlock
2483 builder.createBranch(mergeBlock);
2484
2485 // Make the first else block and add it to the function
2486 elseBlock = new Block(builder.getUniqueId(), *function);
2487 function->addBlock(elseBlock);
2488
2489 // Start building the else block
2490 builder.setBuildPoint(elseBlock);
2491 }
2492
2493 // Comments in header
makeEndIf()2494 void Builder::If::makeEndIf()
2495 {
2496 // jump to the merge block
2497 builder.createBranch(mergeBlock);
2498
2499 // Go back to the headerBlock and make the flow control split
2500 builder.setBuildPoint(headerBlock);
2501 builder.createSelectionMerge(mergeBlock, control);
2502 if (elseBlock)
2503 builder.createConditionalBranch(condition, thenBlock, elseBlock);
2504 else
2505 builder.createConditionalBranch(condition, thenBlock, mergeBlock);
2506
2507 // add the merge block to the function
2508 function->addBlock(mergeBlock);
2509 builder.setBuildPoint(mergeBlock);
2510 }
2511
2512 // Comments in header
makeSwitch(Id selector,unsigned int control,int numSegments,const std::vector<int> & caseValues,const std::vector<int> & valueIndexToSegment,int defaultSegment,std::vector<Block * > & segmentBlocks)2513 void Builder::makeSwitch(Id selector, unsigned int control, int numSegments, const std::vector<int>& caseValues,
2514 const std::vector<int>& valueIndexToSegment, int defaultSegment,
2515 std::vector<Block*>& segmentBlocks)
2516 {
2517 Function& function = buildPoint->getParent();
2518
2519 // make all the blocks
2520 for (int s = 0; s < numSegments; ++s)
2521 segmentBlocks.push_back(new Block(getUniqueId(), function));
2522
2523 Block* mergeBlock = new Block(getUniqueId(), function);
2524
2525 // make and insert the switch's selection-merge instruction
2526 createSelectionMerge(mergeBlock, control);
2527
2528 // make the switch instruction
2529 Instruction* switchInst = new Instruction(NoResult, NoType, OpSwitch);
2530 switchInst->addIdOperand(selector);
2531 auto defaultOrMerge = (defaultSegment >= 0) ? segmentBlocks[defaultSegment] : mergeBlock;
2532 switchInst->addIdOperand(defaultOrMerge->getId());
2533 defaultOrMerge->addPredecessor(buildPoint);
2534 for (int i = 0; i < (int)caseValues.size(); ++i) {
2535 switchInst->addImmediateOperand(caseValues[i]);
2536 switchInst->addIdOperand(segmentBlocks[valueIndexToSegment[i]]->getId());
2537 segmentBlocks[valueIndexToSegment[i]]->addPredecessor(buildPoint);
2538 }
2539 buildPoint->addInstruction(std::unique_ptr<Instruction>(switchInst));
2540
2541 // push the merge block
2542 switchMerges.push(mergeBlock);
2543 }
2544
2545 // Comments in header
addSwitchBreak()2546 void Builder::addSwitchBreak()
2547 {
2548 // branch to the top of the merge block stack
2549 createBranch(switchMerges.top());
2550 createAndSetNoPredecessorBlock("post-switch-break");
2551 }
2552
2553 // Comments in header
nextSwitchSegment(std::vector<Block * > & segmentBlock,int nextSegment)2554 void Builder::nextSwitchSegment(std::vector<Block*>& segmentBlock, int nextSegment)
2555 {
2556 int lastSegment = nextSegment - 1;
2557 if (lastSegment >= 0) {
2558 // Close out previous segment by jumping, if necessary, to next segment
2559 if (! buildPoint->isTerminated())
2560 createBranch(segmentBlock[nextSegment]);
2561 }
2562 Block* block = segmentBlock[nextSegment];
2563 block->getParent().addBlock(block);
2564 setBuildPoint(block);
2565 }
2566
2567 // Comments in header
endSwitch(std::vector<Block * > &)2568 void Builder::endSwitch(std::vector<Block*>& /*segmentBlock*/)
2569 {
2570 // Close out previous segment by jumping, if necessary, to next segment
2571 if (! buildPoint->isTerminated())
2572 addSwitchBreak();
2573
2574 switchMerges.top()->getParent().addBlock(switchMerges.top());
2575 setBuildPoint(switchMerges.top());
2576
2577 switchMerges.pop();
2578 }
2579
makeNewBlock()2580 Block& Builder::makeNewBlock()
2581 {
2582 Function& function = buildPoint->getParent();
2583 auto block = new Block(getUniqueId(), function);
2584 function.addBlock(block);
2585 return *block;
2586 }
2587
makeNewLoop()2588 Builder::LoopBlocks& Builder::makeNewLoop()
2589 {
2590 // This verbosity is needed to simultaneously get the same behavior
2591 // everywhere (id's in the same order), have a syntax that works
2592 // across lots of versions of C++, have no warnings from pedantic
2593 // compilation modes, and leave the rest of the code alone.
2594 Block& head = makeNewBlock();
2595 Block& body = makeNewBlock();
2596 Block& merge = makeNewBlock();
2597 Block& continue_target = makeNewBlock();
2598 LoopBlocks blocks(head, body, merge, continue_target);
2599 loops.push(blocks);
2600 return loops.top();
2601 }
2602
createLoopContinue()2603 void Builder::createLoopContinue()
2604 {
2605 createBranch(&loops.top().continue_target);
2606 // Set up a block for dead code.
2607 createAndSetNoPredecessorBlock("post-loop-continue");
2608 }
2609
createLoopExit()2610 void Builder::createLoopExit()
2611 {
2612 createBranch(&loops.top().merge);
2613 // Set up a block for dead code.
2614 createAndSetNoPredecessorBlock("post-loop-break");
2615 }
2616
closeLoop()2617 void Builder::closeLoop()
2618 {
2619 loops.pop();
2620 }
2621
clearAccessChain()2622 void Builder::clearAccessChain()
2623 {
2624 accessChain.base = NoResult;
2625 accessChain.indexChain.clear();
2626 accessChain.instr = NoResult;
2627 accessChain.swizzle.clear();
2628 accessChain.component = NoResult;
2629 accessChain.preSwizzleBaseType = NoType;
2630 accessChain.isRValue = false;
2631 accessChain.coherentFlags.clear();
2632 accessChain.alignment = 0;
2633 }
2634
2635 // Comments in header
accessChainPushSwizzle(std::vector<unsigned> & swizzle,Id preSwizzleBaseType,AccessChain::CoherentFlags coherentFlags,unsigned int alignment)2636 void Builder::accessChainPushSwizzle(std::vector<unsigned>& swizzle, Id preSwizzleBaseType,
2637 AccessChain::CoherentFlags coherentFlags, unsigned int alignment)
2638 {
2639 accessChain.coherentFlags |= coherentFlags;
2640 accessChain.alignment |= alignment;
2641
2642 // swizzles can be stacked in GLSL, but simplified to a single
2643 // one here; the base type doesn't change
2644 if (accessChain.preSwizzleBaseType == NoType)
2645 accessChain.preSwizzleBaseType = preSwizzleBaseType;
2646
2647 // if needed, propagate the swizzle for the current access chain
2648 if (accessChain.swizzle.size() > 0) {
2649 std::vector<unsigned> oldSwizzle = accessChain.swizzle;
2650 accessChain.swizzle.resize(0);
2651 for (unsigned int i = 0; i < swizzle.size(); ++i) {
2652 assert(swizzle[i] < oldSwizzle.size());
2653 accessChain.swizzle.push_back(oldSwizzle[swizzle[i]]);
2654 }
2655 } else
2656 accessChain.swizzle = swizzle;
2657
2658 // determine if we need to track this swizzle anymore
2659 simplifyAccessChainSwizzle();
2660 }
2661
2662 // Comments in header
accessChainStore(Id rvalue,spv::MemoryAccessMask memoryAccess,spv::Scope scope,unsigned int alignment)2663 void Builder::accessChainStore(Id rvalue, spv::MemoryAccessMask memoryAccess, spv::Scope scope, unsigned int alignment)
2664 {
2665 assert(accessChain.isRValue == false);
2666
2667 transferAccessChainSwizzle(true);
2668 Id base = collapseAccessChain();
2669 Id source = rvalue;
2670
2671 // dynamic component should be gone
2672 assert(accessChain.component == NoResult);
2673
2674 // If swizzle still exists, it is out-of-order or not full, we must load the target vector,
2675 // extract and insert elements to perform writeMask and/or swizzle.
2676 if (accessChain.swizzle.size() > 0) {
2677 Id tempBaseId = createLoad(base);
2678 source = createLvalueSwizzle(getTypeId(tempBaseId), tempBaseId, source, accessChain.swizzle);
2679 }
2680
2681 // take LSB of alignment
2682 alignment = alignment & ~(alignment & (alignment-1));
2683 if (getStorageClass(base) == StorageClassPhysicalStorageBufferEXT) {
2684 memoryAccess = (spv::MemoryAccessMask)(memoryAccess | spv::MemoryAccessAlignedMask);
2685 }
2686
2687 createStore(source, base, memoryAccess, scope, alignment);
2688 }
2689
2690 // Comments in header
accessChainLoad(Decoration precision,Decoration nonUniform,Id resultType,spv::MemoryAccessMask memoryAccess,spv::Scope scope,unsigned int alignment)2691 Id Builder::accessChainLoad(Decoration precision, Decoration nonUniform, Id resultType,
2692 spv::MemoryAccessMask memoryAccess, spv::Scope scope, unsigned int alignment)
2693 {
2694 Id id;
2695
2696 if (accessChain.isRValue) {
2697 // transfer access chain, but try to stay in registers
2698 transferAccessChainSwizzle(false);
2699 if (accessChain.indexChain.size() > 0) {
2700 Id swizzleBase = accessChain.preSwizzleBaseType != NoType ? accessChain.preSwizzleBaseType : resultType;
2701
2702 // if all the accesses are constants, we can use OpCompositeExtract
2703 std::vector<unsigned> indexes;
2704 bool constant = true;
2705 for (int i = 0; i < (int)accessChain.indexChain.size(); ++i) {
2706 if (isConstantScalar(accessChain.indexChain[i]))
2707 indexes.push_back(getConstantScalar(accessChain.indexChain[i]));
2708 else {
2709 constant = false;
2710 break;
2711 }
2712 }
2713
2714 if (constant) {
2715 id = createCompositeExtract(accessChain.base, swizzleBase, indexes);
2716 } else {
2717 Id lValue = NoResult;
2718 if (spvVersion >= Spv_1_4) {
2719 // make a new function variable for this r-value, using an initializer,
2720 // and mark it as NonWritable so that downstream it can be detected as a lookup
2721 // table
2722 lValue = createVariable(StorageClassFunction, getTypeId(accessChain.base), "indexable",
2723 accessChain.base);
2724 addDecoration(lValue, DecorationNonWritable);
2725 } else {
2726 lValue = createVariable(StorageClassFunction, getTypeId(accessChain.base), "indexable");
2727 // store into it
2728 createStore(accessChain.base, lValue);
2729 }
2730 // move base to the new variable
2731 accessChain.base = lValue;
2732 accessChain.isRValue = false;
2733
2734 // load through the access chain
2735 id = createLoad(collapseAccessChain());
2736 }
2737 setPrecision(id, precision);
2738 } else
2739 id = accessChain.base; // no precision, it was set when this was defined
2740 } else {
2741 transferAccessChainSwizzle(true);
2742
2743 // take LSB of alignment
2744 alignment = alignment & ~(alignment & (alignment-1));
2745 if (getStorageClass(accessChain.base) == StorageClassPhysicalStorageBufferEXT) {
2746 memoryAccess = (spv::MemoryAccessMask)(memoryAccess | spv::MemoryAccessAlignedMask);
2747 }
2748
2749 // load through the access chain
2750 id = collapseAccessChain();
2751 // Apply nonuniform both to the access chain and the loaded value.
2752 // Buffer accesses need the access chain decorated, and this is where
2753 // loaded image types get decorated. TODO: This should maybe move to
2754 // createImageTextureFunctionCall.
2755 addDecoration(id, nonUniform);
2756 id = createLoad(id, memoryAccess, scope, alignment);
2757 setPrecision(id, precision);
2758 addDecoration(id, nonUniform);
2759 }
2760
2761 // Done, unless there are swizzles to do
2762 if (accessChain.swizzle.size() == 0 && accessChain.component == NoResult)
2763 return id;
2764
2765 // Do remaining swizzling
2766
2767 // Do the basic swizzle
2768 if (accessChain.swizzle.size() > 0) {
2769 Id swizzledType = getScalarTypeId(getTypeId(id));
2770 if (accessChain.swizzle.size() > 1)
2771 swizzledType = makeVectorType(swizzledType, (int)accessChain.swizzle.size());
2772 id = createRvalueSwizzle(precision, swizzledType, id, accessChain.swizzle);
2773 }
2774
2775 // Do the dynamic component
2776 if (accessChain.component != NoResult)
2777 id = setPrecision(createVectorExtractDynamic(id, resultType, accessChain.component), precision);
2778
2779 addDecoration(id, nonUniform);
2780 return id;
2781 }
2782
accessChainGetLValue()2783 Id Builder::accessChainGetLValue()
2784 {
2785 assert(accessChain.isRValue == false);
2786
2787 transferAccessChainSwizzle(true);
2788 Id lvalue = collapseAccessChain();
2789
2790 // If swizzle exists, it is out-of-order or not full, we must load the target vector,
2791 // extract and insert elements to perform writeMask and/or swizzle. This does not
2792 // go with getting a direct l-value pointer.
2793 assert(accessChain.swizzle.size() == 0);
2794 assert(accessChain.component == NoResult);
2795
2796 return lvalue;
2797 }
2798
2799 // comment in header
accessChainGetInferredType()2800 Id Builder::accessChainGetInferredType()
2801 {
2802 // anything to operate on?
2803 if (accessChain.base == NoResult)
2804 return NoType;
2805 Id type = getTypeId(accessChain.base);
2806
2807 // do initial dereference
2808 if (! accessChain.isRValue)
2809 type = getContainedTypeId(type);
2810
2811 // dereference each index
2812 for (auto it = accessChain.indexChain.cbegin(); it != accessChain.indexChain.cend(); ++it) {
2813 if (isStructType(type))
2814 type = getContainedTypeId(type, getConstantScalar(*it));
2815 else
2816 type = getContainedTypeId(type);
2817 }
2818
2819 // dereference swizzle
2820 if (accessChain.swizzle.size() == 1)
2821 type = getContainedTypeId(type);
2822 else if (accessChain.swizzle.size() > 1)
2823 type = makeVectorType(getContainedTypeId(type), (int)accessChain.swizzle.size());
2824
2825 // dereference component selection
2826 if (accessChain.component)
2827 type = getContainedTypeId(type);
2828
2829 return type;
2830 }
2831
dump(std::vector<unsigned int> & out) const2832 void Builder::dump(std::vector<unsigned int>& out) const
2833 {
2834 // Header, before first instructions:
2835 out.push_back(MagicNumber);
2836 out.push_back(spvVersion);
2837 out.push_back(builderNumber);
2838 out.push_back(uniqueId + 1);
2839 out.push_back(0);
2840
2841 // Capabilities
2842 for (auto it = capabilities.cbegin(); it != capabilities.cend(); ++it) {
2843 Instruction capInst(0, 0, OpCapability);
2844 capInst.addImmediateOperand(*it);
2845 capInst.dump(out);
2846 }
2847
2848 for (auto it = extensions.cbegin(); it != extensions.cend(); ++it) {
2849 Instruction extInst(0, 0, OpExtension);
2850 extInst.addStringOperand(it->c_str());
2851 extInst.dump(out);
2852 }
2853
2854 dumpInstructions(out, imports);
2855 Instruction memInst(0, 0, OpMemoryModel);
2856 memInst.addImmediateOperand(addressModel);
2857 memInst.addImmediateOperand(memoryModel);
2858 memInst.dump(out);
2859
2860 // Instructions saved up while building:
2861 dumpInstructions(out, entryPoints);
2862 dumpInstructions(out, executionModes);
2863
2864 // Debug instructions
2865 dumpInstructions(out, strings);
2866 dumpSourceInstructions(out);
2867 for (int e = 0; e < (int)sourceExtensions.size(); ++e) {
2868 Instruction sourceExtInst(0, 0, OpSourceExtension);
2869 sourceExtInst.addStringOperand(sourceExtensions[e]);
2870 sourceExtInst.dump(out);
2871 }
2872 dumpInstructions(out, names);
2873 dumpModuleProcesses(out);
2874
2875 // Annotation instructions
2876 dumpInstructions(out, decorations);
2877
2878 dumpInstructions(out, constantsTypesGlobals);
2879 dumpInstructions(out, externals);
2880
2881 // The functions
2882 module.dump(out);
2883 }
2884
2885 //
2886 // Protected methods.
2887 //
2888
2889 // Turn the described access chain in 'accessChain' into an instruction(s)
2890 // computing its address. This *cannot* include complex swizzles, which must
2891 // be handled after this is called.
2892 //
2893 // Can generate code.
collapseAccessChain()2894 Id Builder::collapseAccessChain()
2895 {
2896 assert(accessChain.isRValue == false);
2897
2898 // did we already emit an access chain for this?
2899 if (accessChain.instr != NoResult)
2900 return accessChain.instr;
2901
2902 // If we have a dynamic component, we can still transfer
2903 // that into a final operand to the access chain. We need to remap the
2904 // dynamic component through the swizzle to get a new dynamic component to
2905 // update.
2906 //
2907 // This was not done in transferAccessChainSwizzle() because it might
2908 // generate code.
2909 remapDynamicSwizzle();
2910 if (accessChain.component != NoResult) {
2911 // transfer the dynamic component to the access chain
2912 accessChain.indexChain.push_back(accessChain.component);
2913 accessChain.component = NoResult;
2914 }
2915
2916 // note that non-trivial swizzling is left pending
2917
2918 // do we have an access chain?
2919 if (accessChain.indexChain.size() == 0)
2920 return accessChain.base;
2921
2922 // emit the access chain
2923 StorageClass storageClass = (StorageClass)module.getStorageClass(getTypeId(accessChain.base));
2924 accessChain.instr = createAccessChain(storageClass, accessChain.base, accessChain.indexChain);
2925
2926 return accessChain.instr;
2927 }
2928
2929 // For a dynamic component selection of a swizzle.
2930 //
2931 // Turn the swizzle and dynamic component into just a dynamic component.
2932 //
2933 // Generates code.
remapDynamicSwizzle()2934 void Builder::remapDynamicSwizzle()
2935 {
2936 // do we have a swizzle to remap a dynamic component through?
2937 if (accessChain.component != NoResult && accessChain.swizzle.size() > 1) {
2938 // build a vector of the swizzle for the component to map into
2939 std::vector<Id> components;
2940 for (int c = 0; c < (int)accessChain.swizzle.size(); ++c)
2941 components.push_back(makeUintConstant(accessChain.swizzle[c]));
2942 Id mapType = makeVectorType(makeUintType(32), (int)accessChain.swizzle.size());
2943 Id map = makeCompositeConstant(mapType, components);
2944
2945 // use it
2946 accessChain.component = createVectorExtractDynamic(map, makeUintType(32), accessChain.component);
2947 accessChain.swizzle.clear();
2948 }
2949 }
2950
2951 // clear out swizzle if it is redundant, that is reselecting the same components
2952 // that would be present without the swizzle.
simplifyAccessChainSwizzle()2953 void Builder::simplifyAccessChainSwizzle()
2954 {
2955 // If the swizzle has fewer components than the vector, it is subsetting, and must stay
2956 // to preserve that fact.
2957 if (getNumTypeComponents(accessChain.preSwizzleBaseType) > (int)accessChain.swizzle.size())
2958 return;
2959
2960 // if components are out of order, it is a swizzle
2961 for (unsigned int i = 0; i < accessChain.swizzle.size(); ++i) {
2962 if (i != accessChain.swizzle[i])
2963 return;
2964 }
2965
2966 // otherwise, there is no need to track this swizzle
2967 accessChain.swizzle.clear();
2968 if (accessChain.component == NoResult)
2969 accessChain.preSwizzleBaseType = NoType;
2970 }
2971
2972 // To the extent any swizzling can become part of the chain
2973 // of accesses instead of a post operation, make it so.
2974 // If 'dynamic' is true, include transferring the dynamic component,
2975 // otherwise, leave it pending.
2976 //
2977 // Does not generate code. just updates the access chain.
transferAccessChainSwizzle(bool dynamic)2978 void Builder::transferAccessChainSwizzle(bool dynamic)
2979 {
2980 // non existent?
2981 if (accessChain.swizzle.size() == 0 && accessChain.component == NoResult)
2982 return;
2983
2984 // too complex?
2985 // (this requires either a swizzle, or generating code for a dynamic component)
2986 if (accessChain.swizzle.size() > 1)
2987 return;
2988
2989 // single component, either in the swizzle and/or dynamic component
2990 if (accessChain.swizzle.size() == 1) {
2991 assert(accessChain.component == NoResult);
2992 // handle static component selection
2993 accessChain.indexChain.push_back(makeUintConstant(accessChain.swizzle.front()));
2994 accessChain.swizzle.clear();
2995 accessChain.preSwizzleBaseType = NoType;
2996 } else if (dynamic && accessChain.component != NoResult) {
2997 assert(accessChain.swizzle.size() == 0);
2998 // handle dynamic component
2999 accessChain.indexChain.push_back(accessChain.component);
3000 accessChain.preSwizzleBaseType = NoType;
3001 accessChain.component = NoResult;
3002 }
3003 }
3004
3005 // Utility method for creating a new block and setting the insert point to
3006 // be in it. This is useful for flow-control operations that need a "dummy"
3007 // block proceeding them (e.g. instructions after a discard, etc).
createAndSetNoPredecessorBlock(const char *)3008 void Builder::createAndSetNoPredecessorBlock(const char* /*name*/)
3009 {
3010 Block* block = new Block(getUniqueId(), buildPoint->getParent());
3011 block->setUnreachable();
3012 buildPoint->getParent().addBlock(block);
3013 setBuildPoint(block);
3014
3015 // if (name)
3016 // addName(block->getId(), name);
3017 }
3018
3019 // Comments in header
createBranch(Block * block)3020 void Builder::createBranch(Block* block)
3021 {
3022 Instruction* branch = new Instruction(OpBranch);
3023 branch->addIdOperand(block->getId());
3024 buildPoint->addInstruction(std::unique_ptr<Instruction>(branch));
3025 block->addPredecessor(buildPoint);
3026 }
3027
createSelectionMerge(Block * mergeBlock,unsigned int control)3028 void Builder::createSelectionMerge(Block* mergeBlock, unsigned int control)
3029 {
3030 Instruction* merge = new Instruction(OpSelectionMerge);
3031 merge->addIdOperand(mergeBlock->getId());
3032 merge->addImmediateOperand(control);
3033 buildPoint->addInstruction(std::unique_ptr<Instruction>(merge));
3034 }
3035
createLoopMerge(Block * mergeBlock,Block * continueBlock,unsigned int control,const std::vector<unsigned int> & operands)3036 void Builder::createLoopMerge(Block* mergeBlock, Block* continueBlock, unsigned int control,
3037 const std::vector<unsigned int>& operands)
3038 {
3039 Instruction* merge = new Instruction(OpLoopMerge);
3040 merge->addIdOperand(mergeBlock->getId());
3041 merge->addIdOperand(continueBlock->getId());
3042 merge->addImmediateOperand(control);
3043 for (int op = 0; op < (int)operands.size(); ++op)
3044 merge->addImmediateOperand(operands[op]);
3045 buildPoint->addInstruction(std::unique_ptr<Instruction>(merge));
3046 }
3047
createConditionalBranch(Id condition,Block * thenBlock,Block * elseBlock)3048 void Builder::createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock)
3049 {
3050 Instruction* branch = new Instruction(OpBranchConditional);
3051 branch->addIdOperand(condition);
3052 branch->addIdOperand(thenBlock->getId());
3053 branch->addIdOperand(elseBlock->getId());
3054 buildPoint->addInstruction(std::unique_ptr<Instruction>(branch));
3055 thenBlock->addPredecessor(buildPoint);
3056 elseBlock->addPredecessor(buildPoint);
3057 }
3058
3059 // OpSource
3060 // [OpSourceContinued]
3061 // ...
dumpSourceInstructions(const spv::Id fileId,const std::string & text,std::vector<unsigned int> & out) const3062 void Builder::dumpSourceInstructions(const spv::Id fileId, const std::string& text,
3063 std::vector<unsigned int>& out) const
3064 {
3065 const int maxWordCount = 0xFFFF;
3066 const int opSourceWordCount = 4;
3067 const int nonNullBytesPerInstruction = 4 * (maxWordCount - opSourceWordCount) - 1;
3068
3069 if (source != SourceLanguageUnknown) {
3070 // OpSource Language Version File Source
3071 Instruction sourceInst(NoResult, NoType, OpSource);
3072 sourceInst.addImmediateOperand(source);
3073 sourceInst.addImmediateOperand(sourceVersion);
3074 // File operand
3075 if (fileId != NoResult) {
3076 sourceInst.addIdOperand(fileId);
3077 // Source operand
3078 if (text.size() > 0) {
3079 int nextByte = 0;
3080 std::string subString;
3081 while ((int)text.size() - nextByte > 0) {
3082 subString = text.substr(nextByte, nonNullBytesPerInstruction);
3083 if (nextByte == 0) {
3084 // OpSource
3085 sourceInst.addStringOperand(subString.c_str());
3086 sourceInst.dump(out);
3087 } else {
3088 // OpSourcContinued
3089 Instruction sourceContinuedInst(OpSourceContinued);
3090 sourceContinuedInst.addStringOperand(subString.c_str());
3091 sourceContinuedInst.dump(out);
3092 }
3093 nextByte += nonNullBytesPerInstruction;
3094 }
3095 } else
3096 sourceInst.dump(out);
3097 } else
3098 sourceInst.dump(out);
3099 }
3100 }
3101
3102 // Dump an OpSource[Continued] sequence for the source and every include file
dumpSourceInstructions(std::vector<unsigned int> & out) const3103 void Builder::dumpSourceInstructions(std::vector<unsigned int>& out) const
3104 {
3105 dumpSourceInstructions(sourceFileStringId, sourceText, out);
3106 for (auto iItr = includeFiles.begin(); iItr != includeFiles.end(); ++iItr)
3107 dumpSourceInstructions(iItr->first, *iItr->second, out);
3108 }
3109
dumpInstructions(std::vector<unsigned int> & out,const std::vector<std::unique_ptr<Instruction>> & instructions) const3110 void Builder::dumpInstructions(std::vector<unsigned int>& out,
3111 const std::vector<std::unique_ptr<Instruction> >& instructions) const
3112 {
3113 for (int i = 0; i < (int)instructions.size(); ++i) {
3114 instructions[i]->dump(out);
3115 }
3116 }
3117
dumpModuleProcesses(std::vector<unsigned int> & out) const3118 void Builder::dumpModuleProcesses(std::vector<unsigned int>& out) const
3119 {
3120 for (int i = 0; i < (int)moduleProcesses.size(); ++i) {
3121 Instruction moduleProcessed(OpModuleProcessed);
3122 moduleProcessed.addStringOperand(moduleProcesses[i]);
3123 moduleProcessed.dump(out);
3124 }
3125 }
3126
3127 }; // end spv namespace
3128