1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program OpenGL ES 2.0 Module
3 * -------------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Texture unit usage tests.
22 *
23 * \todo [2012-07-12 nuutti] Come up with a good way to make these tests faster.
24 *//*--------------------------------------------------------------------*/
25
26 #include "es2fTextureUnitTests.hpp"
27 #include "glsTextureTestUtil.hpp"
28 #include "gluTextureUtil.hpp"
29 #include "gluContextInfo.hpp"
30 #include "tcuTextureUtil.hpp"
31 #include "tcuImageCompare.hpp"
32 #include "tcuMatrix.hpp"
33 #include "tcuRenderTarget.hpp"
34 #include "sglrContextUtil.hpp"
35 #include "sglrReferenceContext.hpp"
36 #include "sglrGLContext.hpp"
37 #include "deMath.h"
38 #include "deStringUtil.hpp"
39 #include "deRandom.hpp"
40
41 #include "glwEnums.hpp"
42 #include "glwFunctions.hpp"
43
44 using tcu::Vec2;
45 using tcu::Vec3;
46 using tcu::Vec4;
47 using tcu::IVec2;
48 using tcu::Mat3;
49 using std::vector;
50 using std::string;
51 using namespace glw; // GL types
52
53 namespace deqp
54 {
55
56 using namespace gls::TextureTestUtil;
57
58 namespace gles2
59 {
60 namespace Functional
61 {
62
63 static const int VIEWPORT_WIDTH = 128;
64 static const int VIEWPORT_HEIGHT = 128;
65
66 static const int TEXTURE_WIDTH_2D = 128;
67 static const int TEXTURE_HEIGHT_2D = 128;
68
69 // \note Cube map texture size is larger in order to make minifications possible - otherwise would need to display different faces at same time.
70 static const int TEXTURE_WIDTH_CUBE = 256;
71 static const int TEXTURE_HEIGHT_CUBE = 256;
72
73 static const int GRID_CELL_SIZE = 8;
74
75 static const GLenum s_testFormats[] =
76 {
77 GL_RGB,
78 GL_RGBA,
79 GL_ALPHA,
80 GL_LUMINANCE,
81 GL_LUMINANCE_ALPHA
82 };
83
84 static const GLenum s_testDataTypes[] =
85 {
86 GL_UNSIGNED_BYTE,
87 GL_UNSIGNED_SHORT_5_6_5,
88 GL_UNSIGNED_SHORT_4_4_4_4,
89 GL_UNSIGNED_SHORT_5_5_5_1,
90 };
91
92 static const GLenum s_testWrapModes[] =
93 {
94 GL_CLAMP_TO_EDGE,
95 GL_REPEAT,
96 GL_MIRRORED_REPEAT,
97 };
98
99 static const GLenum s_testMinFilters[] =
100 {
101 GL_NEAREST,
102 GL_LINEAR,
103 GL_NEAREST_MIPMAP_NEAREST,
104 GL_LINEAR_MIPMAP_NEAREST,
105 GL_NEAREST_MIPMAP_LINEAR,
106 GL_LINEAR_MIPMAP_LINEAR
107 };
108
109 static const GLenum s_testNonMipmapMinFilters[] =
110 {
111 GL_NEAREST,
112 GL_LINEAR
113 };
114
115 static const GLenum s_testMagFilters[] =
116 {
117 GL_NEAREST,
118 GL_LINEAR
119 };
120
121 static const GLenum s_cubeFaceTargets[] =
122 {
123 GL_TEXTURE_CUBE_MAP_POSITIVE_X,
124 GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
125 GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
126 GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
127 GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
128 GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
129 };
130
generateMultiTexFragmentShader(int numUnits,const GLenum * unitTypes)131 static string generateMultiTexFragmentShader(int numUnits, const GLenum* unitTypes)
132 {
133 // The fragment shader calculates the average of a set of textures.
134
135 string samplersStr;
136 string matricesStr;
137 string lookupsStr;
138
139 string colorMultiplier = "(1.0/" + de::toString(numUnits) + ".0)";
140
141 for (int ndx = 0; ndx < numUnits; ndx++)
142 {
143 string ndxStr = de::toString(ndx);
144 string samplerName = "u_sampler" + ndxStr;
145 string transformationName = "u_trans" + ndxStr;
146 const char* samplerType = unitTypes[ndx] == GL_TEXTURE_2D ? "sampler2D" : "samplerCube";
147 const char* lookupFunc = unitTypes[ndx] == GL_TEXTURE_2D ? "texture2D" : "textureCube";
148
149 samplersStr += string("") + "uniform mediump " + samplerType + " " + samplerName + ";\n";
150 matricesStr += "uniform mediump mat3 " + transformationName + ";\n";
151
152 string lookupCoord = transformationName + "*vec3(v_coord, 1.0)";
153
154 if (unitTypes[ndx] == GL_TEXTURE_2D)
155 lookupCoord = "vec2(" + lookupCoord + ")";
156
157 lookupsStr += "\tcolor += " + colorMultiplier + "*" + lookupFunc + "(" + samplerName + ", " + lookupCoord + ");\n";
158 }
159
160 return
161 samplersStr +
162 matricesStr +
163 "varying mediump vec2 v_coord;\n"
164 "\n"
165 "void main (void)\n"
166 "{\n"
167 " mediump vec4 color = vec4(0.0);\n" +
168 lookupsStr +
169 " gl_FragColor = color;\n"
170 "}\n";
171 }
172
generateShaderProgramDeclaration(int numUnits,const GLenum * unitTypes)173 static sglr::pdec::ShaderProgramDeclaration generateShaderProgramDeclaration (int numUnits, const GLenum* unitTypes)
174 {
175 sglr::pdec::ShaderProgramDeclaration decl;
176
177 decl << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT);
178 decl << sglr::pdec::VertexAttribute("a_coord", rr::GENERICVECTYPE_FLOAT);
179 decl << sglr::pdec::VertexToFragmentVarying(rr::GENERICVECTYPE_FLOAT);
180 decl << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT);
181
182 for (int ndx = 0; ndx < numUnits; ++ndx)
183 {
184 string samplerName = "u_sampler" + de::toString(ndx);
185 string transformationName = "u_trans" + de::toString(ndx);
186
187 decl << sglr::pdec::Uniform(samplerName, (unitTypes[ndx] == GL_TEXTURE_2D) ? (glu::TYPE_SAMPLER_2D) : (glu::TYPE_SAMPLER_CUBE));
188 decl << sglr::pdec::Uniform(transformationName, glu::TYPE_FLOAT_MAT3);
189 }
190
191 decl << sglr::pdec::VertexSource("attribute highp vec4 a_position;\n"
192 "attribute mediump vec2 a_coord;\n"
193 "varying mediump vec2 v_coord;\n"
194 "\n"
195 "void main (void)\n"
196 "{\n"
197 " gl_Position = a_position;\n"
198 " v_coord = a_coord;\n"
199 "}\n");
200 decl << sglr::pdec::FragmentSource(generateMultiTexFragmentShader(numUnits, unitTypes));
201
202 return decl;
203 }
204
205 // Calculates values to be used in calculateLod().
calculateLodDerivateParts(const Mat3 & transformation)206 static Vec4 calculateLodDerivateParts(const Mat3& transformation)
207 {
208 // Calculate transformed coordinates of three corners.
209 Vec2 trans00 = (transformation * Vec3(0.0f, 0.0f, 1.0f)).xy();
210 Vec2 trans01 = (transformation * Vec3(0.0f, 1.0f, 1.0f)).xy();
211 Vec2 trans10 = (transformation * Vec3(1.0f, 0.0f, 1.0f)).xy();
212
213 return Vec4(trans10.x() - trans00.x(),
214 trans01.x() - trans00.x(),
215 trans10.y() - trans00.y(),
216 trans01.y() - trans00.y());
217 }
218
219 // Calculates the maximum allowed lod from derivates
calculateLodMax(const Vec4 & derivateParts,const tcu::IVec2 & textureSize,const Vec2 & screenDerivate)220 static float calculateLodMax(const Vec4& derivateParts, const tcu::IVec2& textureSize, const Vec2& screenDerivate)
221 {
222 float dudx = derivateParts.x() * (float)textureSize.x() * screenDerivate.x();
223 float dudy = derivateParts.y() * (float)textureSize.x() * screenDerivate.y();
224 float dvdx = derivateParts.z() * (float)textureSize.y() * screenDerivate.x();
225 float dvdy = derivateParts.w() * (float)textureSize.y() * screenDerivate.y();
226
227 return deFloatLog2(de::max(de::abs(dudx), de::abs(dudy)) + de::max(de::abs(dvdx), de::abs(dvdy)));
228 }
229
230 // Calculates the minimum allowed lod from derivates
calculateLodMin(const Vec4 & derivateParts,const tcu::IVec2 & textureSize,const Vec2 & screenDerivate)231 static float calculateLodMin(const Vec4& derivateParts, const tcu::IVec2& textureSize, const Vec2& screenDerivate)
232 {
233 float dudx = derivateParts.x() * (float)textureSize.x() * screenDerivate.x();
234 float dudy = derivateParts.y() * (float)textureSize.x() * screenDerivate.y();
235 float dvdx = derivateParts.z() * (float)textureSize.y() * screenDerivate.x();
236 float dvdy = derivateParts.w() * (float)textureSize.y() * screenDerivate.y();
237
238 return deFloatLog2(de::max(de::max(de::abs(dudx), de::abs(dudy)), de::max(de::abs(dvdx), de::abs(dvdy))));
239 }
240
241 class MultiTexShader : public sglr::ShaderProgram
242 {
243 public:
244 MultiTexShader (deUint32 randSeed, int numUnits, const vector<GLenum>& unitTypes);
245
246 void setUniforms (sglr::Context& context, deUint32 program) const;
247 void makeSafeLods (const vector<IVec2>& textureSizes, const IVec2& viewportSize); // Modifies texture coordinates so that LODs aren't too close to x.5 or 0.0 .
248
249 private:
250 void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
251 void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
252
253 int m_numUnits;
254 vector<GLenum> m_unitTypes; // 2d or cube map.
255 vector<Mat3> m_transformations;
256 vector<Vec4> m_lodDerivateParts; // Parts of lod derivates; computed in init(), used in eval().
257 };
258
MultiTexShader(deUint32 randSeed,int numUnits,const vector<GLenum> & unitTypes)259 MultiTexShader::MultiTexShader (deUint32 randSeed, int numUnits, const vector<GLenum>& unitTypes)
260 : sglr::ShaderProgram (generateShaderProgramDeclaration(numUnits, &unitTypes[0]))
261 , m_numUnits (numUnits)
262 , m_unitTypes (unitTypes)
263 {
264 // 2d-to-cube-face transformations.
265 // \note 2d coordinates range from 0 to 1 and cube face coordinates from -1 to 1, so scaling is done as well.
266 static const float s_cubeTransforms[][3*3] =
267 {
268 // Face -X: (x, y, 1) -> (-1, -(2*y-1), +(2*x-1))
269 { 0.0f, 0.0f, -1.0f,
270 0.0f, -2.0f, 1.0f,
271 2.0f, 0.0f, -1.0f },
272 // Face +X: (x, y, 1) -> (+1, -(2*y-1), -(2*x-1))
273 { 0.0f, 0.0f, 1.0f,
274 0.0f, -2.0f, 1.0f,
275 -2.0f, 0.0f, 1.0f },
276 // Face -Y: (x, y, 1) -> (+(2*x-1), -1, -(2*y-1))
277 { 2.0f, 0.0f, -1.0f,
278 0.0f, 0.0f, -1.0f,
279 0.0f, -2.0f, 1.0f },
280 // Face +Y: (x, y, 1) -> (+(2*x-1), +1, +(2*y-1))
281 { 2.0f, 0.0f, -1.0f,
282 0.0f, 0.0f, 1.0f,
283 0.0f, 2.0f, -1.0f },
284 // Face -Z: (x, y, 1) -> (-(2*x-1), -(2*y-1), -1)
285 { -2.0f, 0.0f, 1.0f,
286 0.0f, -2.0f, 1.0f,
287 0.0f, 0.0f, -1.0f },
288 // Face +Z: (x, y, 1) -> (+(2*x-1), -(2*y-1), +1)
289 { 2.0f, 0.0f, -1.0f,
290 0.0f, -2.0f, 1.0f,
291 0.0f, 0.0f, 1.0f }
292 };
293
294 // Generate transformation matrices.
295
296 de::Random rnd(randSeed);
297
298 m_transformations.reserve(m_numUnits);
299 m_lodDerivateParts.reserve(m_numUnits);
300
301 DE_ASSERT((int)m_unitTypes.size() == m_numUnits);
302
303 for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
304 {
305 if (m_unitTypes[unitNdx] == GL_TEXTURE_2D)
306 {
307 float rotAngle = rnd.getFloat(0.0f, 2.0f*DE_PI);
308 float xScaleFactor = rnd.getFloat(0.7f, 1.5f);
309 float yScaleFactor = rnd.getFloat(0.7f, 1.5f);
310 float xShearAmount = rnd.getFloat(0.0f, 0.5f);
311 float yShearAmount = rnd.getFloat(0.0f, 0.5f);
312 float xTranslationAmount = rnd.getFloat(-0.5f, 0.5f);
313 float yTranslationAmount = rnd.getFloat(-0.5f, 0.5f);
314
315 float tempOffsetData[3*3] = // For temporarily centering the coordinates to get nicer transformations.
316 {
317 1.0f, 0.0f, -0.5f,
318 0.0f, 1.0f, -0.5f,
319 0.0f, 0.0f, 1.0f
320 };
321 float rotTransfData[3*3] =
322 {
323 deFloatCos(rotAngle), -deFloatSin(rotAngle), 0.0f,
324 deFloatSin(rotAngle), deFloatCos(rotAngle), 0.0f,
325 0.0f, 0.0f, 1.0f
326 };
327 float scaleTransfData[3*3] =
328 {
329 xScaleFactor, 0.0f, 0.0f,
330 0.0f, yScaleFactor, 0.0f,
331 0.0f, 0.0f, 1.0f
332 };
333 float xShearTransfData[3*3] =
334 {
335 1.0f, xShearAmount, 0.0f,
336 0.0f, 1.0f, 0.0f,
337 0.0f, 0.0f, 1.0f
338 };
339 float yShearTransfData[3*3] =
340 {
341 1.0f, 0.0f, 0.0f,
342 yShearAmount, 1.0f, 0.0f,
343 0.0f, 0.0f, 1.0f
344 };
345 float translationTransfData[3*3] =
346 {
347 1.0f, 0.0f, xTranslationAmount,
348 0.0f, 1.0f, yTranslationAmount,
349 0.0f, 0.0f, 1.0f
350 };
351
352 Mat3 transformation =
353 Mat3(tempOffsetData) *
354 Mat3(translationTransfData) *
355 Mat3(rotTransfData) *
356 Mat3(scaleTransfData) *
357 Mat3(xShearTransfData) *
358 Mat3(yShearTransfData) *
359 (Mat3(tempOffsetData) * (-1.0f));
360
361 // Calculate parts of lod derivates.
362 m_lodDerivateParts.push_back(calculateLodDerivateParts(transformation));
363
364 m_transformations.push_back(transformation);
365 }
366 else
367 {
368 DE_ASSERT(m_unitTypes[unitNdx] == GL_TEXTURE_CUBE_MAP);
369 DE_STATIC_ASSERT((int)tcu::CUBEFACE_LAST == DE_LENGTH_OF_ARRAY(s_cubeTransforms));
370
371 float planarTransData[3*3];
372
373 // In case of a cube map, we only want to render one face, so the transformation needs to be restricted - only enlarging scaling is done.
374
375 for (int i = 0; i < DE_LENGTH_OF_ARRAY(planarTransData); i++)
376 {
377 if (i == 0 || i == 4)
378 planarTransData[i] = rnd.getFloat(0.1f, 0.9f); // Two first diagonal cells control the scaling.
379 else if (i == 8)
380 planarTransData[i] = 1.0f;
381 else
382 planarTransData[i] = 0.0f;
383 }
384
385 int faceNdx = rnd.getInt(0, (int)tcu::CUBEFACE_LAST - 1);
386 Mat3 planarTrans (planarTransData); // Planar, face-agnostic transformation.
387 Mat3 finalTrans = Mat3(s_cubeTransforms[faceNdx]) * planarTrans; // Final transformation from planar to cube map coordinates, including the transformation just generated.
388
389 // Calculate parts of lod derivates.
390 m_lodDerivateParts.push_back(calculateLodDerivateParts(planarTrans));
391
392 m_transformations.push_back(finalTrans);
393 }
394 }
395 }
396
setUniforms(sglr::Context & ctx,deUint32 program) const397 void MultiTexShader::setUniforms (sglr::Context& ctx, deUint32 program) const
398 {
399 ctx.useProgram(program);
400
401 // Sampler and matrix uniforms.
402
403 for (int ndx = 0; ndx < m_numUnits; ndx++)
404 {
405 string ndxStr = de::toString(ndx);
406
407 ctx.uniform1i(ctx.getUniformLocation(program, ("u_sampler" + ndxStr).c_str()), ndx);
408 ctx.uniformMatrix3fv(ctx.getUniformLocation(program, ("u_trans" + ndxStr).c_str()), 1, GL_FALSE, (GLfloat*)&m_transformations[ndx].getColumnMajorData()[0]);
409 }
410 }
411
makeSafeLods(const vector<IVec2> & textureSizes,const IVec2 & viewportSize)412 void MultiTexShader::makeSafeLods (const vector<IVec2>& textureSizes, const IVec2& viewportSize)
413 {
414 DE_ASSERT((int)textureSizes.size() == m_numUnits);
415
416 static const float shrinkScaleMatData[3*3] =
417 {
418 0.95f, 0.0f, 0.0f,
419 0.0f, 0.95f, 0.0f,
420 0.0f, 0.0f, 1.0f
421 };
422 Mat3 shrinkScaleMat(shrinkScaleMatData);
423
424 Vec2 screenDerivate(1.0f / (float)viewportSize.x(), 1.0f / (float)viewportSize.y());
425
426 for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
427 {
428 // As long as LOD is too close to 0.0 or is positive and too close to a something-and-a-half (0.5, 1.5, 2.5 etc) or allowed lod range could round to different levels, zoom in a little to get a safer LOD.
429 for (;;)
430 {
431 const float threshold = 0.1f;
432 const float epsilon = 0.01f;
433
434 const float lodMax = calculateLodMax(m_lodDerivateParts[unitNdx], textureSizes[unitNdx], screenDerivate);
435 const float lodMin = calculateLodMin(m_lodDerivateParts[unitNdx], textureSizes[unitNdx], screenDerivate);
436
437 const deInt32 maxLevel = (lodMax + epsilon < 0.5f) ? (0) : (deCeilFloatToInt32(lodMax + epsilon + 0.5f) - 1);
438 const deInt32 minLevel = (lodMin - epsilon < 0.5f) ? (0) : (deCeilFloatToInt32(lodMin - epsilon + 0.5f) - 1);
439
440 if (de::abs(lodMax) < threshold || (lodMax > 0.0f && de::abs(deFloatFrac(lodMax) - 0.5f) < threshold) ||
441 de::abs(lodMin) < threshold || (lodMin > 0.0f && de::abs(deFloatFrac(lodMin) - 0.5f) < threshold) ||
442 maxLevel != minLevel)
443 {
444 m_transformations[unitNdx] = shrinkScaleMat * m_transformations[unitNdx];
445 m_lodDerivateParts[unitNdx] = calculateLodDerivateParts(m_transformations[unitNdx]);
446 }
447 else
448 break;
449 }
450 }
451 }
452
shadeVertices(const rr::VertexAttrib * inputs,rr::VertexPacket * const * packets,const int numPackets) const453 void MultiTexShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
454 {
455 for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
456 {
457 rr::VertexPacket& packet = *(packets[packetNdx]);
458
459 packet.position = rr::readVertexAttribFloat(inputs[0], packet.instanceNdx, packet.vertexNdx);
460 packet.outputs[0] = rr::readVertexAttribFloat(inputs[1], packet.instanceNdx, packet.vertexNdx);
461 }
462 }
463
shadeFragments(rr::FragmentPacket * packets,const int numPackets,const rr::FragmentShadingContext & context) const464 void MultiTexShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
465 {
466 DE_ASSERT((int)m_unitTypes.size() == m_numUnits);
467 DE_ASSERT((int)m_transformations.size() == m_numUnits);
468 DE_ASSERT((int)m_lodDerivateParts.size() == m_numUnits);
469
470 for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
471 {
472 rr::FragmentPacket& packet = packets[packetNdx];
473 const float colorMultiplier = 1.0f / (float)m_numUnits;
474 Vec4 outColors[4] = { Vec4(0.0f), Vec4(0.0f), Vec4(0.0f), Vec4(0.0f) };
475
476 for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
477 {
478 tcu::Vec4 texSamples[4];
479
480 // Read tex coords
481 const tcu::Vec2 texCoords[4] =
482 {
483 rr::readTriangleVarying<float>(packet, context, 0, 0).xy(),
484 rr::readTriangleVarying<float>(packet, context, 0, 1).xy(),
485 rr::readTriangleVarying<float>(packet, context, 0, 2).xy(),
486 rr::readTriangleVarying<float>(packet, context, 0, 3).xy(),
487 };
488
489 if (m_unitTypes[unitNdx] == GL_TEXTURE_2D)
490 {
491 // Transform
492 const tcu::Vec2 transformedTexCoords[4] =
493 {
494 (m_transformations[unitNdx] * Vec3(texCoords[0].x(), texCoords[0].y(), 1.0f)).xy(),
495 (m_transformations[unitNdx] * Vec3(texCoords[1].x(), texCoords[1].y(), 1.0f)).xy(),
496 (m_transformations[unitNdx] * Vec3(texCoords[2].x(), texCoords[2].y(), 1.0f)).xy(),
497 (m_transformations[unitNdx] * Vec3(texCoords[3].x(), texCoords[3].y(), 1.0f)).xy(),
498 };
499
500 // Sample
501 m_uniforms[2*unitNdx].sampler.tex2D->sample4(texSamples, transformedTexCoords);
502 }
503 else
504 {
505 DE_ASSERT(m_unitTypes[unitNdx] == GL_TEXTURE_CUBE_MAP);
506
507 // Transform
508 const tcu::Vec3 transformedTexCoords[4] =
509 {
510 m_transformations[unitNdx] * Vec3(texCoords[0].x(), texCoords[0].y(), 1.0f),
511 m_transformations[unitNdx] * Vec3(texCoords[1].x(), texCoords[1].y(), 1.0f),
512 m_transformations[unitNdx] * Vec3(texCoords[2].x(), texCoords[2].y(), 1.0f),
513 m_transformations[unitNdx] * Vec3(texCoords[3].x(), texCoords[3].y(), 1.0f),
514 };
515
516 // Sample
517 m_uniforms[2*unitNdx].sampler.texCube->sample4(texSamples, transformedTexCoords);
518 }
519
520 // Add to sum
521 for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
522 outColors[fragNdx] += colorMultiplier * texSamples[fragNdx];
523 }
524
525 // output
526 for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
527 rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, outColors[fragNdx]);
528 }
529 }
530
531 class TextureUnitCase : public TestCase
532 {
533 public:
534 enum CaseType
535 {
536 CASE_ONLY_2D = 0,
537 CASE_ONLY_CUBE,
538 CASE_MIXED,
539
540 CASE_LAST
541 };
542 TextureUnitCase (Context& context, const char* name, const char* desc, int numUnits /* \note If non-positive, use all units */, CaseType caseType, deUint32 randSeed);
543 ~TextureUnitCase (void);
544
545 void init (void);
546 void deinit (void);
547 IterateResult iterate (void);
548
549 private:
550 struct TextureParameters
551 {
552 GLenum format;
553 GLenum dataType;
554 GLenum wrapModeS;
555 GLenum wrapModeT;
556 GLenum minFilter;
557 GLenum magFilter;
558 };
559
560 TextureUnitCase (const TextureUnitCase& other);
561 TextureUnitCase& operator= (const TextureUnitCase& other);
562
563 void render (sglr::Context& context);
564
565 const int m_numUnitsParam;
566 const CaseType m_caseType;
567 const deUint32 m_randSeed;
568
569 int m_numTextures; //!< \note Needed in addition to m_numUnits since same texture may be bound to many texture units.
570 int m_numUnits; //!< = m_numUnitsParam > 0 ? m_numUnitsParam : implementationDefinedMaximum
571
572 vector<GLenum> m_textureTypes;
573 vector<TextureParameters> m_textureParams;
574 vector<tcu::Texture2D*> m_textures2d;
575 vector<tcu::TextureCube*> m_texturesCube;
576 vector<int> m_unitTextures; //!< Which texture is used in a particular unit.
577 vector<int> m_ndx2dOrCube; //!< Index of a texture in either m_textures2d or m_texturesCube, depending on texture type.
578 MultiTexShader* m_shader;
579 };
580
TextureUnitCase(Context & context,const char * name,const char * desc,int numUnits,CaseType caseType,deUint32 randSeed)581 TextureUnitCase::TextureUnitCase (Context& context, const char* name, const char* desc, int numUnits, CaseType caseType, deUint32 randSeed)
582 : TestCase (context, tcu::NODETYPE_SELF_VALIDATE, name, desc)
583 , m_numUnitsParam (numUnits)
584 , m_caseType (caseType)
585 , m_randSeed (randSeed)
586 , m_shader (DE_NULL)
587 {
588 }
589
~TextureUnitCase(void)590 TextureUnitCase::~TextureUnitCase (void)
591 {
592 TextureUnitCase::deinit();
593 }
594
deinit(void)595 void TextureUnitCase::deinit (void)
596 {
597 for (vector<tcu::Texture2D*>::iterator i = m_textures2d.begin(); i != m_textures2d.end(); i++)
598 delete *i;
599 m_textures2d.clear();
600
601 for (vector<tcu::TextureCube*>::iterator i = m_texturesCube.begin(); i != m_texturesCube.end(); i++)
602 delete *i;
603 m_texturesCube.clear();
604
605 delete m_shader;
606 m_shader = DE_NULL;
607 }
608
init(void)609 void TextureUnitCase::init (void)
610 {
611 m_numUnits = m_numUnitsParam > 0 ? m_numUnitsParam : m_context.getContextInfo().getInt(GL_MAX_TEXTURE_IMAGE_UNITS);
612
613 // Make the textures.
614
615 try
616 {
617 tcu::TestLog& log = m_testCtx.getLog();
618 de::Random rnd (m_randSeed);
619
620 if (rnd.getFloat() < 0.7f)
621 m_numTextures = m_numUnits; // In most cases use one unit per texture.
622 else
623 m_numTextures = rnd.getInt(deMax32(1, m_numUnits - 2), m_numUnits); // Sometimes assign same texture to multiple units.
624
625 log << tcu::TestLog::Message << ("Using " + de::toString(m_numUnits) + " texture unit(s) and " + de::toString(m_numTextures) + " texture(s)").c_str() << tcu::TestLog::EndMessage;
626
627 m_textureTypes.reserve(m_numTextures);
628 m_textureParams.reserve(m_numTextures);
629 m_ndx2dOrCube.reserve(m_numTextures);
630
631 // Generate textures.
632
633 for (int texNdx = 0; texNdx < m_numTextures; texNdx++)
634 {
635 // Either fixed or randomized target types (2d or cube), and randomized parameters for every texture.
636
637 TextureParameters params;
638 bool is2d = m_caseType == CASE_ONLY_2D ? true :
639 m_caseType == CASE_ONLY_CUBE ? false :
640 rnd.getBool();
641
642 GLenum type = is2d ? GL_TEXTURE_2D : GL_TEXTURE_CUBE_MAP;
643 const int texWidth = is2d ? TEXTURE_WIDTH_2D : TEXTURE_WIDTH_CUBE;
644 const int texHeight = is2d ? TEXTURE_HEIGHT_2D : TEXTURE_HEIGHT_CUBE;
645 bool mipmaps = (deIsPowerOfTwo32(texWidth) && deIsPowerOfTwo32(texHeight));
646 int numLevels = mipmaps ? deLog2Floor32(de::max(texWidth, texHeight))+1 : 1;
647
648 params.wrapModeS = s_testWrapModes [rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testWrapModes) - 1)];
649 params.wrapModeT = s_testWrapModes [rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testWrapModes) - 1)];
650 params.magFilter = s_testMagFilters [rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testMagFilters) - 1)];
651 params.dataType = s_testDataTypes [rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testDataTypes) - 1)];
652
653 // Certain minification filters are only used when using mipmaps.
654 if (mipmaps)
655 params.minFilter = s_testMinFilters[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testMinFilters) - 1)];
656 else
657 params.minFilter = s_testNonMipmapMinFilters[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testNonMipmapMinFilters) - 1)];
658
659 // Format may depend on data type.
660 if (params.dataType == GL_UNSIGNED_SHORT_5_6_5)
661 params.format = GL_RGB;
662 else if (params.dataType == GL_UNSIGNED_SHORT_4_4_4_4 || params.dataType == GL_UNSIGNED_SHORT_5_5_5_1)
663 params.format = GL_RGBA;
664 else
665 params.format = s_testFormats[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testFormats) - 1)];
666
667 m_textureTypes.push_back(type);
668 m_textureParams.push_back(params);
669
670 // Create new texture.
671
672 if (is2d)
673 {
674 m_ndx2dOrCube.push_back((int)m_textures2d.size()); // Remember the index this texture has in the 2d array.
675 m_textures2d.push_back(new tcu::Texture2D(glu::mapGLTransferFormat(params.format, params.dataType), texWidth, texHeight));
676 }
677 else
678 {
679 m_ndx2dOrCube.push_back((int)m_texturesCube.size()); // Remember the index this texture has in the cube array.
680 DE_ASSERT(texWidth == texHeight);
681 m_texturesCube.push_back(new tcu::TextureCube(glu::mapGLTransferFormat(params.format, params.dataType), texWidth));
682 }
683
684 tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(is2d ? m_textures2d.back()->getFormat() : m_texturesCube.back()->getFormat());
685 Vec4 cBias = fmtInfo.valueMin;
686 Vec4 cScale = fmtInfo.valueMax-fmtInfo.valueMin;
687
688 // Fill with grid texture.
689
690 int numFaces = is2d ? 1 : (int)tcu::CUBEFACE_LAST;
691
692 for (int face = 0; face < numFaces; face++)
693 {
694 deUint32 rgb = rnd.getUint32() & 0x00ffffff;
695 deUint32 alpha0 = 0xff000000;
696 deUint32 alpha1 = 0xff000000;
697
698 if (params.format == GL_ALPHA) // \note This needs alpha to be visible.
699 {
700 alpha0 &= rnd.getUint32();
701 alpha1 = ~alpha0;
702 }
703
704 deUint32 colorA = alpha0 | rgb;
705 deUint32 colorB = alpha1 | ~rgb;
706
707 for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
708 {
709 if (is2d)
710 m_textures2d.back()->allocLevel(levelNdx);
711 else
712 m_texturesCube.back()->allocLevel((tcu::CubeFace)face, levelNdx);
713
714 int curCellSize = deMax32(1, GRID_CELL_SIZE >> levelNdx); // \note Scale grid cell size for mipmaps.
715
716 tcu::PixelBufferAccess access = is2d ? m_textures2d.back()->getLevel(levelNdx) : m_texturesCube.back()->getLevelFace(levelNdx, (tcu::CubeFace)face);
717 tcu::fillWithGrid(access, curCellSize, tcu::RGBA(colorA).toVec()*cScale + cBias, tcu::RGBA(colorB).toVec()*cScale + cBias);
718 }
719 }
720 }
721
722 // Assign a texture index to each unit.
723
724 m_unitTextures.reserve(m_numUnits);
725
726 // \note Every texture is used at least once.
727 for (int i = 0; i < m_numTextures; i++)
728 m_unitTextures.push_back(i);
729
730 // Assign a random texture to remaining units.
731 while ((int)m_unitTextures.size() < m_numUnits)
732 m_unitTextures.push_back(rnd.getInt(0, m_numTextures - 1));
733
734 rnd.shuffle(m_unitTextures.begin(), m_unitTextures.end());
735
736 // Create shader.
737
738 vector<GLenum> unitTypes;
739 unitTypes.reserve(m_numUnits);
740 for (int i = 0; i < m_numUnits; i++)
741 unitTypes.push_back(m_textureTypes[m_unitTextures[i]]);
742
743 DE_ASSERT(m_shader == DE_NULL);
744 m_shader = new MultiTexShader(rnd.getUint32(), m_numUnits, unitTypes);
745 }
746 catch (const std::exception&)
747 {
748 // Clean up to save memory.
749 TextureUnitCase::deinit();
750 throw;
751 }
752 }
753
iterate(void)754 TextureUnitCase::IterateResult TextureUnitCase::iterate (void)
755 {
756 glu::RenderContext& renderCtx = m_context.getRenderContext();
757 const tcu::RenderTarget& renderTarget = renderCtx.getRenderTarget();
758 tcu::TestLog& log = m_testCtx.getLog();
759 de::Random rnd (m_randSeed);
760
761 int viewportWidth = deMin32(VIEWPORT_WIDTH, renderTarget.getWidth());
762 int viewportHeight = deMin32(VIEWPORT_HEIGHT, renderTarget.getHeight());
763 int viewportX = rnd.getInt(0, renderTarget.getWidth() - viewportWidth);
764 int viewportY = rnd.getInt(0, renderTarget.getHeight() - viewportHeight);
765
766 tcu::Surface gles2Frame (viewportWidth, viewportHeight);
767 tcu::Surface refFrame (viewportWidth, viewportHeight);
768
769 {
770 // First we do some tricks to make the LODs safer wrt. precision issues. See MultiTexShader::makeSafeLods().
771
772 vector<IVec2> texSizes;
773 texSizes.reserve(m_numUnits);
774
775 for (int i = 0; i < m_numUnits; i++)
776 {
777 int texNdx = m_unitTextures[i];
778 int texNdxInType = m_ndx2dOrCube[texNdx];
779 GLenum type = m_textureTypes[texNdx];
780
781 switch (type)
782 {
783 case GL_TEXTURE_2D: texSizes.push_back(IVec2(m_textures2d[texNdxInType]->getWidth(), m_textures2d[texNdxInType]->getHeight())); break;
784 case GL_TEXTURE_CUBE_MAP: texSizes.push_back(IVec2(m_texturesCube[texNdxInType]->getSize(), m_texturesCube[texNdxInType]->getSize())); break;
785 default:
786 DE_ASSERT(DE_FALSE);
787 }
788 }
789
790 m_shader->makeSafeLods(texSizes, IVec2(viewportWidth, viewportHeight));
791 }
792
793 // Render using GLES2.
794 {
795 sglr::GLContext context(renderCtx, log, sglr::GLCONTEXT_LOG_CALLS|sglr::GLCONTEXT_LOG_PROGRAMS, tcu::IVec4(viewportX, viewportY, viewportWidth, viewportHeight));
796
797 render(context);
798
799 context.readPixels(gles2Frame, 0, 0, viewportWidth, viewportHeight);
800 }
801
802 // Render reference image.
803 {
804 sglr::ReferenceContextBuffers buffers (tcu::PixelFormat(8,8,8,renderTarget.getPixelFormat().alphaBits?8:0), 0 /* depth */, 0 /* stencil */, viewportWidth, viewportHeight);
805 sglr::ReferenceContext context (sglr::ReferenceContextLimits(renderCtx), buffers.getColorbuffer(), buffers.getDepthbuffer(), buffers.getStencilbuffer());
806
807 render(context);
808
809 context.readPixels(refFrame, 0, 0, viewportWidth, viewportHeight);
810 }
811
812 // Compare images.
813 const float threshold = 0.001f;
814 bool isOk = tcu::fuzzyCompare(log, "ComparisonResult", "Image comparison result", refFrame, gles2Frame, threshold, tcu::COMPARE_LOG_RESULT);
815
816 // Store test result.
817 m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
818 isOk ? "Pass" : "Image comparison failed");
819
820 return STOP;
821 }
822
render(sglr::Context & context)823 void TextureUnitCase::render (sglr::Context& context)
824 {
825 // Setup textures.
826
827 vector<deUint32> textureGLNames;
828 vector<bool> isTextureSetUp(m_numTextures, false); // \note Same texture may be bound to multiple units, but we only want to set up parameters and data once per texture.
829
830 textureGLNames.resize(m_numTextures);
831 context.genTextures(m_numTextures, &textureGLNames[0]);
832
833 for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
834 {
835 int texNdx = m_unitTextures[unitNdx];
836
837 // Bind texture to unit.
838 context.activeTexture(GL_TEXTURE0 + unitNdx);
839 context.bindTexture(m_textureTypes[texNdx], textureGLNames[texNdx]);
840
841 if (!isTextureSetUp[texNdx])
842 {
843 // Binding this texture for first time, so set parameters and data.
844
845 context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_WRAP_S, m_textureParams[texNdx].wrapModeS);
846 context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_WRAP_T, m_textureParams[texNdx].wrapModeT);
847 context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_MIN_FILTER, m_textureParams[texNdx].minFilter);
848 context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_MAG_FILTER, m_textureParams[texNdx].magFilter);
849
850 if (m_textureTypes[texNdx] == GL_TEXTURE_2D)
851 {
852 int ndx2d = m_ndx2dOrCube[texNdx];
853 const tcu::Texture2D* texture = m_textures2d[ndx2d];
854 bool mipmaps = (deIsPowerOfTwo32(texture->getWidth()) && deIsPowerOfTwo32(texture->getHeight()));
855 int numLevels = mipmaps ? deLog2Floor32(de::max(texture->getWidth(), texture->getHeight()))+1 : 1;
856
857 context.pixelStorei(GL_UNPACK_ALIGNMENT, 1);
858
859 for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
860 {
861 tcu::ConstPixelBufferAccess access = texture->getLevel(levelNdx);
862 int width = access.getWidth();
863 int height = access.getHeight();
864
865 DE_ASSERT(access.getRowPitch() == access.getFormat().getPixelSize()*width);
866
867 context.texImage2D(GL_TEXTURE_2D, levelNdx, m_textureParams[texNdx].format, width, height, 0, m_textureParams[texNdx].format, m_textureParams[texNdx].dataType, access.getDataPtr());
868 }
869 }
870 else
871 {
872 DE_ASSERT(m_textureTypes[texNdx] == GL_TEXTURE_CUBE_MAP);
873
874 int ndxCube = m_ndx2dOrCube[texNdx];
875 const tcu::TextureCube* texture = m_texturesCube[ndxCube];
876 bool mipmaps = deIsPowerOfTwo32(texture->getSize()) != DE_FALSE;
877 int numLevels = mipmaps ? deLog2Floor32(texture->getSize())+1 : 1;
878
879 context.pixelStorei(GL_UNPACK_ALIGNMENT, 1);
880
881 for (int face = 0; face < (int)tcu::CUBEFACE_LAST; face++)
882 {
883 for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
884 {
885 tcu::ConstPixelBufferAccess access = texture->getLevelFace(levelNdx, (tcu::CubeFace)face);
886 int width = access.getWidth();
887 int height = access.getHeight();
888
889 DE_ASSERT(access.getRowPitch() == access.getFormat().getPixelSize()*width);
890
891 context.texImage2D(s_cubeFaceTargets[face], levelNdx, m_textureParams[texNdx].format, width, height, 0, m_textureParams[texNdx].format, m_textureParams[texNdx].dataType, access.getDataPtr());
892 }
893 }
894 }
895
896 isTextureSetUp[texNdx] = true; // Don't set up this texture's parameters and data again later.
897 }
898 }
899
900 GLU_EXPECT_NO_ERROR(context.getError(), "Set textures");
901
902 // Setup shader
903
904 deUint32 shaderID = context.createProgram(m_shader);
905
906 // Draw.
907
908 context.clearColor(0.125f, 0.25f, 0.5f, 1.0f);
909 context.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
910 m_shader->setUniforms(context, shaderID);
911 sglr::drawQuad(context, shaderID, Vec3(-1.0f, -1.0f, 0.0f), Vec3(1.0f, 1.0f, 0.0f));
912 GLU_EXPECT_NO_ERROR(context.getError(), "Draw");
913
914 // Delete previously generated texture names.
915
916 context.deleteTextures(m_numTextures, &textureGLNames[0]);
917 GLU_EXPECT_NO_ERROR(context.getError(), "Delete textures");
918 }
919
TextureUnitTests(Context & context)920 TextureUnitTests::TextureUnitTests (Context& context)
921 : TestCaseGroup(context, "units", "Texture Unit Usage Tests")
922 {
923 }
924
~TextureUnitTests(void)925 TextureUnitTests::~TextureUnitTests (void)
926 {
927 }
928
init(void)929 void TextureUnitTests::init (void)
930 {
931 const int numTestsPerGroup = 10;
932
933 static const int unitCounts[] =
934 {
935 2,
936 4,
937 8,
938 -1 // \note Negative stands for the implementation-specified maximum.
939 };
940
941 for (int unitCountNdx = 0; unitCountNdx < DE_LENGTH_OF_ARRAY(unitCounts); unitCountNdx++)
942 {
943 int numUnits = unitCounts[unitCountNdx];
944
945 string countGroupName = (unitCounts[unitCountNdx] < 0 ? "all" : de::toString(numUnits)) + "_units";
946
947 tcu::TestCaseGroup* countGroup = new tcu::TestCaseGroup(m_testCtx, countGroupName.c_str(), "");
948 addChild(countGroup);
949
950 DE_STATIC_ASSERT((int)TextureUnitCase::CASE_ONLY_2D == 0);
951
952 for (int caseType = (int)TextureUnitCase::CASE_ONLY_2D; caseType < (int)TextureUnitCase::CASE_LAST; caseType++)
953 {
954 const char* caseTypeGroupName = (TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_ONLY_2D ? "only_2d" :
955 (TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_ONLY_CUBE ? "only_cube" :
956 (TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_MIXED ? "mixed" :
957 DE_NULL;
958 DE_ASSERT(caseTypeGroupName != DE_NULL);
959
960 tcu::TestCaseGroup* caseTypeGroup = new tcu::TestCaseGroup(m_testCtx, caseTypeGroupName, "");
961 countGroup->addChild(caseTypeGroup);
962
963 for (int testNdx = 0; testNdx < numTestsPerGroup; testNdx++)
964 caseTypeGroup->addChild(new TextureUnitCase(m_context, de::toString(testNdx).c_str(), "", numUnits, (TextureUnitCase::CaseType)caseType, (deUint32)deInt32Hash(testNdx)));
965 }
966 }
967 }
968
969 } // Functional
970 } // gles2
971 } // deqp
972