• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_TRANSPOSE_H
12 #define EIGEN_TRANSPOSE_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 template<typename MatrixType>
18 struct traits<Transpose<MatrixType> > : public traits<MatrixType>
19 {
20   typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
21   typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedPlain;
22   enum {
23     RowsAtCompileTime = MatrixType::ColsAtCompileTime,
24     ColsAtCompileTime = MatrixType::RowsAtCompileTime,
25     MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
26     MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
27     FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
28     Flags0 = traits<MatrixTypeNestedPlain>::Flags & ~(LvalueBit | NestByRefBit),
29     Flags1 = Flags0 | FlagsLvalueBit,
30     Flags = Flags1 ^ RowMajorBit,
31     InnerStrideAtCompileTime = inner_stride_at_compile_time<MatrixType>::ret,
32     OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret
33   };
34 };
35 }
36 
37 template<typename MatrixType, typename StorageKind> class TransposeImpl;
38 
39 /** \class Transpose
40   * \ingroup Core_Module
41   *
42   * \brief Expression of the transpose of a matrix
43   *
44   * \tparam MatrixType the type of the object of which we are taking the transpose
45   *
46   * This class represents an expression of the transpose of a matrix.
47   * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
48   * and most of the time this is the only way it is used.
49   *
50   * \sa MatrixBase::transpose(), MatrixBase::adjoint()
51   */
52 template<typename MatrixType> class Transpose
53   : public TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>
54 {
55   public:
56 
57     typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested;
58 
59     typedef typename TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
60     EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
61     typedef typename internal::remove_all<MatrixType>::type NestedExpression;
62 
63     EIGEN_DEVICE_FUNC
64     explicit inline Transpose(MatrixType& matrix) : m_matrix(matrix) {}
65 
66     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
67 
68     EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.cols(); }
69     EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.rows(); }
70 
71     /** \returns the nested expression */
72     EIGEN_DEVICE_FUNC
73     const typename internal::remove_all<MatrixTypeNested>::type&
74     nestedExpression() const { return m_matrix; }
75 
76     /** \returns the nested expression */
77     EIGEN_DEVICE_FUNC
78     typename internal::remove_reference<MatrixTypeNested>::type&
79     nestedExpression() { return m_matrix; }
80 
81     /** \internal */
82     void resize(Index nrows, Index ncols) {
83       m_matrix.resize(ncols,nrows);
84     }
85 
86   protected:
87     typename internal::ref_selector<MatrixType>::non_const_type m_matrix;
88 };
89 
90 namespace internal {
91 
92 template<typename MatrixType, bool HasDirectAccess = has_direct_access<MatrixType>::ret>
93 struct TransposeImpl_base
94 {
95   typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
96 };
97 
98 template<typename MatrixType>
99 struct TransposeImpl_base<MatrixType, false>
100 {
101   typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
102 };
103 
104 } // end namespace internal
105 
106 // Generic API dispatcher
107 template<typename XprType, typename StorageKind>
108 class TransposeImpl
109   : public internal::generic_xpr_base<Transpose<XprType> >::type
110 {
111 public:
112   typedef typename internal::generic_xpr_base<Transpose<XprType> >::type Base;
113 };
114 
115 template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
116   : public internal::TransposeImpl_base<MatrixType>::type
117 {
118   public:
119 
120     typedef typename internal::TransposeImpl_base<MatrixType>::type Base;
121     using Base::coeffRef;
122     EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
123     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TransposeImpl)
124 
125     EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
126     EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
127 
128     typedef typename internal::conditional<
129                        internal::is_lvalue<MatrixType>::value,
130                        Scalar,
131                        const Scalar
132                      >::type ScalarWithConstIfNotLvalue;
133 
134     EIGEN_DEVICE_FUNC inline ScalarWithConstIfNotLvalue* data() { return derived().nestedExpression().data(); }
135     EIGEN_DEVICE_FUNC inline const Scalar* data() const { return derived().nestedExpression().data(); }
136 
137     // FIXME: shall we keep the const version of coeffRef?
138     EIGEN_DEVICE_FUNC
139     inline const Scalar& coeffRef(Index rowId, Index colId) const
140     {
141       return derived().nestedExpression().coeffRef(colId, rowId);
142     }
143 
144     EIGEN_DEVICE_FUNC
145     inline const Scalar& coeffRef(Index index) const
146     {
147       return derived().nestedExpression().coeffRef(index);
148     }
149 };
150 
151 /** \returns an expression of the transpose of *this.
152   *
153   * Example: \include MatrixBase_transpose.cpp
154   * Output: \verbinclude MatrixBase_transpose.out
155   *
156   * \warning If you want to replace a matrix by its own transpose, do \b NOT do this:
157   * \code
158   * m = m.transpose(); // bug!!! caused by aliasing effect
159   * \endcode
160   * Instead, use the transposeInPlace() method:
161   * \code
162   * m.transposeInPlace();
163   * \endcode
164   * which gives Eigen good opportunities for optimization, or alternatively you can also do:
165   * \code
166   * m = m.transpose().eval();
167   * \endcode
168   *
169   * \sa transposeInPlace(), adjoint() */
170 template<typename Derived>
171 inline Transpose<Derived>
172 DenseBase<Derived>::transpose()
173 {
174   return TransposeReturnType(derived());
175 }
176 
177 /** This is the const version of transpose().
178   *
179   * Make sure you read the warning for transpose() !
180   *
181   * \sa transposeInPlace(), adjoint() */
182 template<typename Derived>
183 inline typename DenseBase<Derived>::ConstTransposeReturnType
184 DenseBase<Derived>::transpose() const
185 {
186   return ConstTransposeReturnType(derived());
187 }
188 
189 /** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
190   *
191   * Example: \include MatrixBase_adjoint.cpp
192   * Output: \verbinclude MatrixBase_adjoint.out
193   *
194   * \warning If you want to replace a matrix by its own adjoint, do \b NOT do this:
195   * \code
196   * m = m.adjoint(); // bug!!! caused by aliasing effect
197   * \endcode
198   * Instead, use the adjointInPlace() method:
199   * \code
200   * m.adjointInPlace();
201   * \endcode
202   * which gives Eigen good opportunities for optimization, or alternatively you can also do:
203   * \code
204   * m = m.adjoint().eval();
205   * \endcode
206   *
207   * \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op */
208 template<typename Derived>
209 inline const typename MatrixBase<Derived>::AdjointReturnType
210 MatrixBase<Derived>::adjoint() const
211 {
212   return AdjointReturnType(this->transpose());
213 }
214 
215 /***************************************************************************
216 * "in place" transpose implementation
217 ***************************************************************************/
218 
219 namespace internal {
220 
221 template<typename MatrixType,
222   bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic,
223   bool MatchPacketSize =
224         (int(MatrixType::RowsAtCompileTime) == int(internal::packet_traits<typename MatrixType::Scalar>::size))
225     &&  (internal::evaluator<MatrixType>::Flags&PacketAccessBit) >
226 struct inplace_transpose_selector;
227 
228 template<typename MatrixType>
229 struct inplace_transpose_selector<MatrixType,true,false> { // square matrix
230   static void run(MatrixType& m) {
231     m.matrix().template triangularView<StrictlyUpper>().swap(m.matrix().transpose());
232   }
233 };
234 
235 // TODO: vectorized path is currently limited to LargestPacketSize x LargestPacketSize cases only.
236 template<typename MatrixType>
237 struct inplace_transpose_selector<MatrixType,true,true> { // PacketSize x PacketSize
238   static void run(MatrixType& m) {
239     typedef typename MatrixType::Scalar Scalar;
240     typedef typename internal::packet_traits<typename MatrixType::Scalar>::type Packet;
241     const Index PacketSize = internal::packet_traits<Scalar>::size;
242     const Index Alignment = internal::evaluator<MatrixType>::Alignment;
243     PacketBlock<Packet> A;
244     for (Index i=0; i<PacketSize; ++i)
245       A.packet[i] = m.template packetByOuterInner<Alignment>(i,0);
246     internal::ptranspose(A);
247     for (Index i=0; i<PacketSize; ++i)
248       m.template writePacket<Alignment>(m.rowIndexByOuterInner(i,0), m.colIndexByOuterInner(i,0), A.packet[i]);
249   }
250 };
251 
252 template<typename MatrixType,bool MatchPacketSize>
253 struct inplace_transpose_selector<MatrixType,false,MatchPacketSize> { // non square matrix
254   static void run(MatrixType& m) {
255     if (m.rows()==m.cols())
256       m.matrix().template triangularView<StrictlyUpper>().swap(m.matrix().transpose());
257     else
258       m = m.transpose().eval();
259   }
260 };
261 
262 } // end namespace internal
263 
264 /** This is the "in place" version of transpose(): it replaces \c *this by its own transpose.
265   * Thus, doing
266   * \code
267   * m.transposeInPlace();
268   * \endcode
269   * has the same effect on m as doing
270   * \code
271   * m = m.transpose().eval();
272   * \endcode
273   * and is faster and also safer because in the latter line of code, forgetting the eval() results
274   * in a bug caused by \ref TopicAliasing "aliasing".
275   *
276   * Notice however that this method is only useful if you want to replace a matrix by its own transpose.
277   * If you just need the transpose of a matrix, use transpose().
278   *
279   * \note if the matrix is not square, then \c *this must be a resizable matrix.
280   * This excludes (non-square) fixed-size matrices, block-expressions and maps.
281   *
282   * \sa transpose(), adjoint(), adjointInPlace() */
283 template<typename Derived>
284 inline void DenseBase<Derived>::transposeInPlace()
285 {
286   eigen_assert((rows() == cols() || (RowsAtCompileTime == Dynamic && ColsAtCompileTime == Dynamic))
287                && "transposeInPlace() called on a non-square non-resizable matrix");
288   internal::inplace_transpose_selector<Derived>::run(derived());
289 }
290 
291 /***************************************************************************
292 * "in place" adjoint implementation
293 ***************************************************************************/
294 
295 /** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose.
296   * Thus, doing
297   * \code
298   * m.adjointInPlace();
299   * \endcode
300   * has the same effect on m as doing
301   * \code
302   * m = m.adjoint().eval();
303   * \endcode
304   * and is faster and also safer because in the latter line of code, forgetting the eval() results
305   * in a bug caused by aliasing.
306   *
307   * Notice however that this method is only useful if you want to replace a matrix by its own adjoint.
308   * If you just need the adjoint of a matrix, use adjoint().
309   *
310   * \note if the matrix is not square, then \c *this must be a resizable matrix.
311   * This excludes (non-square) fixed-size matrices, block-expressions and maps.
312   *
313   * \sa transpose(), adjoint(), transposeInPlace() */
314 template<typename Derived>
315 inline void MatrixBase<Derived>::adjointInPlace()
316 {
317   derived() = adjoint().eval();
318 }
319 
320 #ifndef EIGEN_NO_DEBUG
321 
322 // The following is to detect aliasing problems in most common cases.
323 
324 namespace internal {
325 
326 template<bool DestIsTransposed, typename OtherDerived>
327 struct check_transpose_aliasing_compile_time_selector
328 {
329   enum { ret = bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed };
330 };
331 
332 template<bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
333 struct check_transpose_aliasing_compile_time_selector<DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
334 {
335   enum { ret =    bool(blas_traits<DerivedA>::IsTransposed) != DestIsTransposed
336                || bool(blas_traits<DerivedB>::IsTransposed) != DestIsTransposed
337   };
338 };
339 
340 template<typename Scalar, bool DestIsTransposed, typename OtherDerived>
341 struct check_transpose_aliasing_run_time_selector
342 {
343   static bool run(const Scalar* dest, const OtherDerived& src)
344   {
345     return (bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src));
346   }
347 };
348 
349 template<typename Scalar, bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
350 struct check_transpose_aliasing_run_time_selector<Scalar,DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
351 {
352   static bool run(const Scalar* dest, const CwiseBinaryOp<BinOp,DerivedA,DerivedB>& src)
353   {
354     return ((blas_traits<DerivedA>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src.lhs())))
355         || ((blas_traits<DerivedB>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src.rhs())));
356   }
357 };
358 
359 // the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing,
360 // is because when the condition controlling the assert is known at compile time, ICC emits a warning.
361 // This is actually a good warning: in expressions that don't have any transposing, the condition is
362 // known at compile time to be false, and using that, we can avoid generating the code of the assert again
363 // and again for all these expressions that don't need it.
364 
365 template<typename Derived, typename OtherDerived,
366          bool MightHaveTransposeAliasing
367                  = check_transpose_aliasing_compile_time_selector
368                      <blas_traits<Derived>::IsTransposed,OtherDerived>::ret
369         >
370 struct checkTransposeAliasing_impl
371 {
372     static void run(const Derived& dst, const OtherDerived& other)
373     {
374         eigen_assert((!check_transpose_aliasing_run_time_selector
375                       <typename Derived::Scalar,blas_traits<Derived>::IsTransposed,OtherDerived>
376                       ::run(extract_data(dst), other))
377           && "aliasing detected during transposition, use transposeInPlace() "
378              "or evaluate the rhs into a temporary using .eval()");
379 
380     }
381 };
382 
383 template<typename Derived, typename OtherDerived>
384 struct checkTransposeAliasing_impl<Derived, OtherDerived, false>
385 {
386     static void run(const Derived&, const OtherDerived&)
387     {
388     }
389 };
390 
391 template<typename Dst, typename Src>
392 void check_for_aliasing(const Dst &dst, const Src &src)
393 {
394   internal::checkTransposeAliasing_impl<Dst, Src>::run(dst, src);
395 }
396 
397 } // end namespace internal
398 
399 #endif // EIGEN_NO_DEBUG
400 
401 } // end namespace Eigen
402 
403 #endif // EIGEN_TRANSPOSE_H
404