• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 namespace Eigen {
2 
3 namespace internal {
4 
5 // TODO : once qrsolv2 is removed, use ColPivHouseholderQR or PermutationMatrix instead of ipvt
6 template <typename Scalar>
qrsolv(Matrix<Scalar,Dynamic,Dynamic> & s,const VectorXi & ipvt,const Matrix<Scalar,Dynamic,1> & diag,const Matrix<Scalar,Dynamic,1> & qtb,Matrix<Scalar,Dynamic,1> & x,Matrix<Scalar,Dynamic,1> & sdiag)7 void qrsolv(
8         Matrix< Scalar, Dynamic, Dynamic > &s,
9         // TODO : use a PermutationMatrix once lmpar is no more:
10         const VectorXi &ipvt,
11         const Matrix< Scalar, Dynamic, 1 >  &diag,
12         const Matrix< Scalar, Dynamic, 1 >  &qtb,
13         Matrix< Scalar, Dynamic, 1 >  &x,
14         Matrix< Scalar, Dynamic, 1 >  &sdiag)
15 
16 {
17     typedef DenseIndex Index;
18 
19     /* Local variables */
20     Index i, j, k, l;
21     Scalar temp;
22     Index n = s.cols();
23     Matrix< Scalar, Dynamic, 1 >  wa(n);
24     JacobiRotation<Scalar> givens;
25 
26     /* Function Body */
27     // the following will only change the lower triangular part of s, including
28     // the diagonal, though the diagonal is restored afterward
29 
30     /*     copy r and (q transpose)*b to preserve input and initialize s. */
31     /*     in particular, save the diagonal elements of r in x. */
32     x = s.diagonal();
33     wa = qtb;
34 
35     s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
36 
37     /*     eliminate the diagonal matrix d using a givens rotation. */
38     for (j = 0; j < n; ++j) {
39 
40         /*        prepare the row of d to be eliminated, locating the */
41         /*        diagonal element using p from the qr factorization. */
42         l = ipvt[j];
43         if (diag[l] == 0.)
44             break;
45         sdiag.tail(n-j).setZero();
46         sdiag[j] = diag[l];
47 
48         /*        the transformations to eliminate the row of d */
49         /*        modify only a single element of (q transpose)*b */
50         /*        beyond the first n, which is initially zero. */
51         Scalar qtbpj = 0.;
52         for (k = j; k < n; ++k) {
53             /*           determine a givens rotation which eliminates the */
54             /*           appropriate element in the current row of d. */
55             givens.makeGivens(-s(k,k), sdiag[k]);
56 
57             /*           compute the modified diagonal element of r and */
58             /*           the modified element of ((q transpose)*b,0). */
59             s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
60             temp = givens.c() * wa[k] + givens.s() * qtbpj;
61             qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
62             wa[k] = temp;
63 
64             /*           accumulate the tranformation in the row of s. */
65             for (i = k+1; i<n; ++i) {
66                 temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
67                 sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
68                 s(i,k) = temp;
69             }
70         }
71     }
72 
73     /*     solve the triangular system for z. if the system is */
74     /*     singular, then obtain a least squares solution. */
75     Index nsing;
76     for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
77 
78     wa.tail(n-nsing).setZero();
79     s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
80 
81     // restore
82     sdiag = s.diagonal();
83     s.diagonal() = x;
84 
85     /*     permute the components of z back to components of x. */
86     for (j = 0; j < n; ++j) x[ipvt[j]] = wa[j];
87 }
88 
89 } // end namespace internal
90 
91 } // end namespace Eigen
92