1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 **********************************************************************
5 * Copyright (C) 2000-2016, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
8 * file name: ucnv_lmb.cpp
9 * encoding: UTF-8
10 * tab size: 4 (not used)
11 * indentation:4
12 *
13 * created on: 2000feb09
14 * created by: Brendan Murray
15 * extensively hacked up by: Jim Snyder-Grant
16 *
17 * Modification History:
18 *
19 * Date Name Description
20 *
21 * 06/20/2000 helena OS/400 port changes; mostly typecast.
22 * 06/27/2000 Jim Snyder-Grant Deal with partial characters and small buffers.
23 * Add comments to document LMBCS format and implementation
24 * restructured order & breakdown of functions
25 * 06/28/2000 helena Major rewrite for the callback API changes.
26 */
27
28 #include "unicode/utypes.h"
29
30 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION
31
32 #include "unicode/ucnv_err.h"
33 #include "unicode/ucnv.h"
34 #include "unicode/uset.h"
35 #include "cmemory.h"
36 #include "cstring.h"
37 #include "uassert.h"
38 #include "ucnv_imp.h"
39 #include "ucnv_bld.h"
40 #include "ucnv_cnv.h"
41
42 #ifdef EBCDIC_RTL
43 #include "ascii_a.h"
44 #endif
45
46 /*
47 LMBCS
48
49 (Lotus Multi-Byte Character Set)
50
51 LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
52 databases and in Lotus 1-2-3 files. Programmers who work with the APIs
53 into these products will sometimes need to deal with strings in this format.
54
55 The code in this file provides an implementation for an ICU converter of
56 LMBCS to and from Unicode.
57
58 Since the LMBCS character set is only sparsely documented in existing
59 printed or online material, we have added extensive annotation to this
60 file to serve as a guide to understanding LMBCS.
61
62 LMBCS was originally designed with these four sometimes-competing design goals:
63
64 -Provide encodings for the characters in 12 existing national standards
65 (plus a few other characters)
66 -Minimal memory footprint
67 -Maximal speed of conversion into the existing national character sets
68 -No need to track a changing state as you interpret a string.
69
70
71 All of the national character sets LMBCS was trying to encode are 'ANSI'
72 based, in that the bytes from 0x20 - 0x7F are almost exactly the
73 same common Latin unaccented characters and symbols in all character sets.
74
75 So, in order to help meet the speed & memory design goals, the common ANSI
76 bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
77
78 The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
79 follows:
80
81 [G] D1 [D2]
82
83 That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
84 data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
85 */
86 #define ULMBCS_CHARSIZE_MAX 3
87 /*
88 The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
89 We often have to figure out if byte values are below or above this, so we
90 use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
91 characters just above & below the common lower-ANSI range */
92 #define ULMBCS_C0END 0x1F
93 #define ULMBCS_C1START 0x80
94 /*
95 Since LMBCS is always dealing in byte units. we create a local type here for
96 dealing with these units of LMBCS code units:
97
98 */
99 typedef uint8_t ulmbcs_byte_t;
100
101 /*
102 Most of the values less than 0x20 are reserved in LMBCS to announce
103 which national character standard is being used for the 'D' bytes.
104 In the comments we show the common name and the IBM character-set ID
105 for these character-set announcers:
106 */
107
108 #define ULMBCS_GRP_L1 0x01 /* Latin-1 :ibm-850 */
109 #define ULMBCS_GRP_GR 0x02 /* Greek :ibm-851 */
110 #define ULMBCS_GRP_HE 0x03 /* Hebrew :ibm-1255 */
111 #define ULMBCS_GRP_AR 0x04 /* Arabic :ibm-1256 */
112 #define ULMBCS_GRP_RU 0x05 /* Cyrillic :ibm-1251 */
113 #define ULMBCS_GRP_L2 0x06 /* Latin-2 :ibm-852 */
114 #define ULMBCS_GRP_TR 0x08 /* Turkish :ibm-1254 */
115 #define ULMBCS_GRP_TH 0x0B /* Thai :ibm-874 */
116 #define ULMBCS_GRP_JA 0x10 /* Japanese :ibm-943 */
117 #define ULMBCS_GRP_KO 0x11 /* Korean :ibm-1261 */
118 #define ULMBCS_GRP_TW 0x12 /* Chinese SC :ibm-950 */
119 #define ULMBCS_GRP_CN 0x13 /* Chinese TC :ibm-1386 */
120
121 /*
122 So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
123 character is one of those 12 values, you can interpret the remaining bytes of
124 that character as coming from one of those character sets. Since the lower
125 ANSI bytes already are represented in single bytes, using one of the character
126 set announcers is used to announce a character that starts with a byte of
127 0x80 or greater.
128
129 The character sets are arranged so that the single byte sets all appear
130 before the multi-byte character sets. When we need to tell whether a
131 group byte is for a single byte char set or not we use this define: */
132
133 #define ULMBCS_DOUBLEOPTGROUP_START 0x10
134
135 /*
136 However, to fully understand LMBCS, you must also understand a series of
137 exceptions & optimizations made in service of the design goals.
138
139 First, those of you who are character set mavens may have noticed that
140 the 'double-byte' character sets are actually multi-byte character sets
141 that can have 1 or two bytes, even in the upper-ascii range. To force
142 each group byte to introduce a fixed-width encoding (to make it faster to
143 count characters), we use a convention of doubling up on the group byte
144 to introduce any single-byte character > 0x80 in an otherwise double-byte
145 character set. So, for example, the LMBCS sequence x10 x10 xAE is the
146 same as '0xAE' in the Japanese code page 943.
147
148 Next, you will notice that the list of group bytes has some gaps.
149 These are used in various ways.
150
151 We reserve a few special single byte values for common control
152 characters. These are in the same place as their ANSI eqivalents for speed.
153 */
154
155 #define ULMBCS_HT 0x09 /* Fixed control char - Horizontal Tab */
156 #define ULMBCS_LF 0x0A /* Fixed control char - Line Feed */
157 #define ULMBCS_CR 0x0D /* Fixed control char - Carriage Return */
158
159 /* Then, 1-2-3 reserved a special single-byte character to put at the
160 beginning of internal 'system' range names: */
161
162 #define ULMBCS_123SYSTEMRANGE 0x19
163
164 /* Then we needed a place to put all the other ansi control characters
165 that must be moved to different values because LMBCS reserves those
166 values for other purposes. To represent the control characters, we start
167 with a first byte of 0xF & add the control chaarcter value as the
168 second byte */
169 #define ULMBCS_GRP_CTRL 0x0F
170
171 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the
172 useful doctrine that any byte less than 0x20 in a LMBCS char must be
173 the first byte of a character:*/
174 #define ULMBCS_CTRLOFFSET 0x20
175
176 /*
177 Where to put the characters that aren't part of any of the 12 national
178 character sets? The first thing that was done, in the earlier years of
179 LMBCS, was to use up the spaces of the form
180
181 [G] D1,
182
183 where 'G' was one of the single-byte character groups, and
184 D1 was less than 0x80. These sequences are gathered together
185 into a Lotus-invented doublebyte character set to represent a
186 lot of stray values. Internally, in this implementation, we track this
187 as group '0', as a place to tuck this exceptions list.*/
188
189 #define ULMBCS_GRP_EXCEPT 0x00
190 /*
191 Finally, as the durability and usefulness of UNICODE became clear,
192 LOTUS added a new group 0x14 to hold Unicode values not otherwise
193 represented in LMBCS: */
194 #define ULMBCS_GRP_UNICODE 0x14
195 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
196 (Big-Endian) characters. The exception comes when the UTF16
197 representation would have a zero as the second byte. In that case,
198 'F6' is used in its place, and the bytes are swapped. (This prevents
199 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
200 0xF6xx is in the middle of the Private Use Area.)*/
201 #define ULMBCS_UNICOMPATZERO 0xF6
202
203 /* It is also useful in our code to have a constant for the size of
204 a LMBCS char that holds a literal Unicode value */
205 #define ULMBCS_UNICODE_SIZE 3
206
207 /*
208 To squish the LMBCS representations down even further, and to make
209 translations even faster,sometimes the optimization group byte can be dropped
210 from a LMBCS character. This is decided on a process-by-process basis. The
211 group byte that is dropped is called the 'optimization group'.
212
213 For Notes, the optimzation group is always 0x1.*/
214 #define ULMBCS_DEFAULTOPTGROUP 0x1
215 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
216 file.
217
218 In any case, when using ICU, you either pass in the
219 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
220 etc.). Using plain 'LMBCS' as the name of the converter will give you
221 LMBCS-1.
222
223
224 *** Implementation strategy ***
225
226
227 Because of the extensive use of other character sets, the LMBCS converter
228 keeps a mapping between optimization groups and IBM character sets, so that
229 ICU converters can be created and used as needed. */
230
231 /* As you can see, even though any byte below 0x20 could be an optimization
232 byte, only those at 0x13 or below can map to an actual converter. To limit
233 some loops and searches, we define a value for that last group converter:*/
234
235 #define ULMBCS_GRP_LAST 0x13 /* last LMBCS group that has a converter */
236
237 static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
238 /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
239 /* 0x0001 */ "ibm-850",
240 /* 0x0002 */ "ibm-851",
241 /* 0x0003 */ "windows-1255",
242 /* 0x0004 */ "windows-1256",
243 /* 0x0005 */ "windows-1251",
244 /* 0x0006 */ "ibm-852",
245 /* 0x0007 */ NULL, /* Unused */
246 /* 0x0008 */ "windows-1254",
247 /* 0x0009 */ NULL, /* Control char HT */
248 /* 0x000A */ NULL, /* Control char LF */
249 /* 0x000B */ "windows-874",
250 /* 0x000C */ NULL, /* Unused */
251 /* 0x000D */ NULL, /* Control char CR */
252 /* 0x000E */ NULL, /* Unused */
253 /* 0x000F */ NULL, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
254 /* 0x0010 */ "windows-932",
255 /* 0x0011 */ "windows-949",
256 /* 0x0012 */ "windows-950",
257 /* 0x0013 */ "windows-936"
258
259 /* The rest are null, including the 0x0014 Unicode compatibility region
260 and 0x0019, the 1-2-3 system range control char */
261 };
262
263
264 /* That's approximately all the data that's needed for translating
265 LMBCS to Unicode.
266
267
268 However, to translate Unicode to LMBCS, we need some more support.
269
270 That's because there are often more than one possible mappings from a Unicode
271 code point back into LMBCS. The first thing we do is look up into a table
272 to figure out if there are more than one possible mappings. This table,
273 arranged by Unicode values (including ranges) either lists which group
274 to use, or says that it could go into one or more of the SBCS sets, or
275 into one or more of the DBCS sets. (If the character exists in both DBCS &
276 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
277 length as small as possible. Here's the two special markers we use to indicate
278 ambiguous mappings: */
279
280 #define ULMBCS_AMBIGUOUS_SBCS 0x80 /* could fit in more than one
281 LMBCS sbcs native encoding
282 (example: most accented latin) */
283 #define ULMBCS_AMBIGUOUS_MBCS 0x81 /* could fit in more than one
284 LMBCS mbcs native encoding
285 (example: Unihan) */
286 #define ULMBCS_AMBIGUOUS_ALL 0x82
287 /* And here's a simple way to see if a group falls in an appropriate range */
288 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
289 ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
290 (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
291 (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
292 (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
293 ((agroup) == ULMBCS_AMBIGUOUS_ALL)
294
295
296 /* The table & some code to use it: */
297
298
299 static const struct _UniLMBCSGrpMap
300 {
301 const UChar uniStartRange;
302 const UChar uniEndRange;
303 const ulmbcs_byte_t GrpType;
304 } UniLMBCSGrpMap[]
305 =
306 {
307
308 {0x0001, 0x001F, ULMBCS_GRP_CTRL},
309 {0x0080, 0x009F, ULMBCS_GRP_CTRL},
310 {0x00A0, 0x00A6, ULMBCS_AMBIGUOUS_SBCS},
311 {0x00A7, 0x00A8, ULMBCS_AMBIGUOUS_ALL},
312 {0x00A9, 0x00AF, ULMBCS_AMBIGUOUS_SBCS},
313 {0x00B0, 0x00B1, ULMBCS_AMBIGUOUS_ALL},
314 {0x00B2, 0x00B3, ULMBCS_AMBIGUOUS_SBCS},
315 {0x00B4, 0x00B4, ULMBCS_AMBIGUOUS_ALL},
316 {0x00B5, 0x00B5, ULMBCS_AMBIGUOUS_SBCS},
317 {0x00B6, 0x00B6, ULMBCS_AMBIGUOUS_ALL},
318 {0x00B7, 0x00D6, ULMBCS_AMBIGUOUS_SBCS},
319 {0x00D7, 0x00D7, ULMBCS_AMBIGUOUS_ALL},
320 {0x00D8, 0x00F6, ULMBCS_AMBIGUOUS_SBCS},
321 {0x00F7, 0x00F7, ULMBCS_AMBIGUOUS_ALL},
322 {0x00F8, 0x01CD, ULMBCS_AMBIGUOUS_SBCS},
323 {0x01CE, 0x01CE, ULMBCS_GRP_TW },
324 {0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS},
325 {0x02BA, 0x02BA, ULMBCS_GRP_CN},
326 {0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS},
327 {0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS},
328 {0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS},
329 {0x0384, 0x0390, ULMBCS_AMBIGUOUS_SBCS},
330 {0x0391, 0x03A9, ULMBCS_AMBIGUOUS_ALL},
331 {0x03AA, 0x03B0, ULMBCS_AMBIGUOUS_SBCS},
332 {0x03B1, 0x03C9, ULMBCS_AMBIGUOUS_ALL},
333 {0x03CA, 0x03CE, ULMBCS_AMBIGUOUS_SBCS},
334 {0x0400, 0x0400, ULMBCS_GRP_RU},
335 {0x0401, 0x0401, ULMBCS_AMBIGUOUS_ALL},
336 {0x0402, 0x040F, ULMBCS_GRP_RU},
337 {0x0410, 0x0431, ULMBCS_AMBIGUOUS_ALL},
338 {0x0432, 0x044E, ULMBCS_GRP_RU},
339 {0x044F, 0x044F, ULMBCS_AMBIGUOUS_ALL},
340 {0x0450, 0x0491, ULMBCS_GRP_RU},
341 {0x05B0, 0x05F2, ULMBCS_GRP_HE},
342 {0x060C, 0x06AF, ULMBCS_GRP_AR},
343 {0x0E01, 0x0E5B, ULMBCS_GRP_TH},
344 {0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS},
345 {0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS},
346 {0x2013, 0x2014, ULMBCS_AMBIGUOUS_SBCS},
347 {0x2015, 0x2015, ULMBCS_AMBIGUOUS_MBCS},
348 {0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS},
349 {0x2017, 0x2017, ULMBCS_AMBIGUOUS_SBCS},
350 {0x2018, 0x2019, ULMBCS_AMBIGUOUS_ALL},
351 {0x201A, 0x201B, ULMBCS_AMBIGUOUS_SBCS},
352 {0x201C, 0x201D, ULMBCS_AMBIGUOUS_ALL},
353 {0x201E, 0x201F, ULMBCS_AMBIGUOUS_SBCS},
354 {0x2020, 0x2021, ULMBCS_AMBIGUOUS_ALL},
355 {0x2022, 0x2024, ULMBCS_AMBIGUOUS_SBCS},
356 {0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS},
357 {0x2026, 0x2026, ULMBCS_AMBIGUOUS_ALL},
358 {0x2027, 0x2027, ULMBCS_GRP_TW},
359 {0x2030, 0x2030, ULMBCS_AMBIGUOUS_ALL},
360 {0x2031, 0x2031, ULMBCS_AMBIGUOUS_SBCS},
361 {0x2032, 0x2033, ULMBCS_AMBIGUOUS_MBCS},
362 {0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS},
363 {0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS},
364 {0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS},
365 {0x203C, 0x203C, ULMBCS_GRP_EXCEPT},
366 {0x2074, 0x2074, ULMBCS_GRP_KO},
367 {0x207F, 0x207F, ULMBCS_GRP_EXCEPT},
368 {0x2081, 0x2084, ULMBCS_GRP_KO},
369 {0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS},
370 {0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS},
371 {0x2111, 0x2120, ULMBCS_AMBIGUOUS_SBCS},
372 /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
373 {0x2121, 0x2121, ULMBCS_AMBIGUOUS_MBCS},
374 {0x2122, 0x2126, ULMBCS_AMBIGUOUS_SBCS},
375 {0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS},
376 {0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS},
377 {0x2153, 0x2154, ULMBCS_GRP_KO},
378 {0x215B, 0x215E, ULMBCS_GRP_EXCEPT},
379 {0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS},
380 {0x2190, 0x2193, ULMBCS_AMBIGUOUS_ALL},
381 {0x2194, 0x2195, ULMBCS_GRP_EXCEPT},
382 {0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS},
383 {0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT},
384 {0x21B8, 0x21B9, ULMBCS_GRP_CN},
385 {0x21D0, 0x21D1, ULMBCS_GRP_EXCEPT},
386 {0x21D2, 0x21D2, ULMBCS_AMBIGUOUS_MBCS},
387 {0x21D3, 0x21D3, ULMBCS_GRP_EXCEPT},
388 {0x21D4, 0x21D4, ULMBCS_AMBIGUOUS_MBCS},
389 {0x21D5, 0x21D5, ULMBCS_GRP_EXCEPT},
390 {0x21E7, 0x21E7, ULMBCS_GRP_CN},
391 {0x2200, 0x2200, ULMBCS_AMBIGUOUS_MBCS},
392 {0x2201, 0x2201, ULMBCS_GRP_EXCEPT},
393 {0x2202, 0x2202, ULMBCS_AMBIGUOUS_MBCS},
394 {0x2203, 0x2203, ULMBCS_AMBIGUOUS_MBCS},
395 {0x2204, 0x2206, ULMBCS_GRP_EXCEPT},
396 {0x2207, 0x2208, ULMBCS_AMBIGUOUS_MBCS},
397 {0x2209, 0x220A, ULMBCS_GRP_EXCEPT},
398 {0x220B, 0x220B, ULMBCS_AMBIGUOUS_MBCS},
399 {0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS},
400 {0x2219, 0x2219, ULMBCS_GRP_EXCEPT},
401 {0x221A, 0x221A, ULMBCS_AMBIGUOUS_MBCS},
402 {0x221B, 0x221C, ULMBCS_GRP_EXCEPT},
403 {0x221D, 0x221E, ULMBCS_AMBIGUOUS_MBCS},
404 {0x221F, 0x221F, ULMBCS_GRP_EXCEPT},
405 {0x2220, 0x2220, ULMBCS_AMBIGUOUS_MBCS},
406 {0x2223, 0x222A, ULMBCS_AMBIGUOUS_MBCS},
407 {0x222B, 0x223D, ULMBCS_AMBIGUOUS_MBCS},
408 {0x2245, 0x2248, ULMBCS_GRP_EXCEPT},
409 {0x224C, 0x224C, ULMBCS_GRP_TW},
410 {0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS},
411 {0x2260, 0x2261, ULMBCS_AMBIGUOUS_MBCS},
412 {0x2262, 0x2265, ULMBCS_GRP_EXCEPT},
413 {0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS},
414 {0x2282, 0x2283, ULMBCS_AMBIGUOUS_MBCS},
415 {0x2284, 0x2285, ULMBCS_GRP_EXCEPT},
416 {0x2286, 0x2287, ULMBCS_AMBIGUOUS_MBCS},
417 {0x2288, 0x2297, ULMBCS_GRP_EXCEPT},
418 {0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS},
419 {0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT},
420 {0x2310, 0x2310, ULMBCS_GRP_EXCEPT},
421 {0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS},
422 {0x2318, 0x2321, ULMBCS_GRP_EXCEPT},
423 {0x2318, 0x2321, ULMBCS_GRP_CN},
424 {0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS},
425 {0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS},
426 {0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS},
427 {0x2502, 0x2502, ULMBCS_AMBIGUOUS_ALL},
428 {0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS},
429 {0x2504, 0x2505, ULMBCS_GRP_TW},
430 {0x2506, 0x2665, ULMBCS_AMBIGUOUS_ALL},
431 {0x2666, 0x2666, ULMBCS_GRP_EXCEPT},
432 {0x2667, 0x2669, ULMBCS_AMBIGUOUS_SBCS},
433 {0x266A, 0x266A, ULMBCS_AMBIGUOUS_ALL},
434 {0x266B, 0x266C, ULMBCS_AMBIGUOUS_SBCS},
435 {0x266D, 0x266D, ULMBCS_AMBIGUOUS_MBCS},
436 {0x266E, 0x266E, ULMBCS_AMBIGUOUS_SBCS},
437 {0x266F, 0x266F, ULMBCS_GRP_JA},
438 {0x2670, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS},
439 {0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS},
440 {0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT},
441 {0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS},
442 {0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS},
443 {0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS},
444 {0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE}
445 };
446
447 static ulmbcs_byte_t
FindLMBCSUniRange(UChar uniChar)448 FindLMBCSUniRange(UChar uniChar)
449 {
450 const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
451
452 while (uniChar > pTable->uniEndRange)
453 {
454 pTable++;
455 }
456
457 if (uniChar >= pTable->uniStartRange)
458 {
459 return pTable->GrpType;
460 }
461 return ULMBCS_GRP_UNICODE;
462 }
463
464 /*
465 We also ask the creator of a converter to send in a preferred locale
466 that we can use in resolving ambiguous mappings. They send the locale
467 in as a string, and we map it, if possible, to one of the
468 LMBCS groups. We use this table, and the associated code, to
469 do the lookup: */
470
471 /**************************************************
472 This table maps locale ID's to LMBCS opt groups.
473 The default return is group 0x01. Note that for
474 performance reasons, the table is sorted in
475 increasing alphabetic order, with the notable
476 exception of zhTW. This is to force the check
477 for Traditonal Chinese before dropping back to
478 Simplified.
479
480 Note too that the Latin-1 groups have been
481 commented out because it's the default, and
482 this shortens the table, allowing a serial
483 search to go quickly.
484 *************************************************/
485
486 static const struct _LocaleLMBCSGrpMap
487 {
488 const char *LocaleID;
489 const ulmbcs_byte_t OptGroup;
490 } LocaleLMBCSGrpMap[] =
491 {
492 {"ar", ULMBCS_GRP_AR},
493 {"be", ULMBCS_GRP_RU},
494 {"bg", ULMBCS_GRP_L2},
495 /* {"ca", ULMBCS_GRP_L1}, */
496 {"cs", ULMBCS_GRP_L2},
497 /* {"da", ULMBCS_GRP_L1}, */
498 /* {"de", ULMBCS_GRP_L1}, */
499 {"el", ULMBCS_GRP_GR},
500 /* {"en", ULMBCS_GRP_L1}, */
501 /* {"es", ULMBCS_GRP_L1}, */
502 /* {"et", ULMBCS_GRP_L1}, */
503 /* {"fi", ULMBCS_GRP_L1}, */
504 /* {"fr", ULMBCS_GRP_L1}, */
505 {"he", ULMBCS_GRP_HE},
506 {"hu", ULMBCS_GRP_L2},
507 /* {"is", ULMBCS_GRP_L1}, */
508 /* {"it", ULMBCS_GRP_L1}, */
509 {"iw", ULMBCS_GRP_HE},
510 {"ja", ULMBCS_GRP_JA},
511 {"ko", ULMBCS_GRP_KO},
512 /* {"lt", ULMBCS_GRP_L1}, */
513 /* {"lv", ULMBCS_GRP_L1}, */
514 {"mk", ULMBCS_GRP_RU},
515 /* {"nl", ULMBCS_GRP_L1}, */
516 /* {"no", ULMBCS_GRP_L1}, */
517 {"pl", ULMBCS_GRP_L2},
518 /* {"pt", ULMBCS_GRP_L1}, */
519 {"ro", ULMBCS_GRP_L2},
520 {"ru", ULMBCS_GRP_RU},
521 {"sh", ULMBCS_GRP_L2},
522 {"sk", ULMBCS_GRP_L2},
523 {"sl", ULMBCS_GRP_L2},
524 {"sq", ULMBCS_GRP_L2},
525 {"sr", ULMBCS_GRP_RU},
526 /* {"sv", ULMBCS_GRP_L1}, */
527 {"th", ULMBCS_GRP_TH},
528 {"tr", ULMBCS_GRP_TR},
529 {"uk", ULMBCS_GRP_RU},
530 /* {"vi", ULMBCS_GRP_L1}, */
531 {"zhTW", ULMBCS_GRP_TW},
532 {"zh", ULMBCS_GRP_CN},
533 {NULL, ULMBCS_GRP_L1}
534 };
535
536
537 static ulmbcs_byte_t
FindLMBCSLocale(const char * LocaleID)538 FindLMBCSLocale(const char *LocaleID)
539 {
540 const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
541
542 if ((!LocaleID) || (!*LocaleID))
543 {
544 return 0;
545 }
546
547 while (pTable->LocaleID)
548 {
549 if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
550 {
551 /* First char matches - check whole name, for entry-length */
552 if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
553 return pTable->OptGroup;
554 }
555 else
556 if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
557 break;
558 pTable++;
559 }
560 return ULMBCS_GRP_L1;
561 }
562
563
564 /*
565 Before we get to the main body of code, here's how we hook up to the rest
566 of ICU. ICU converters are required to define a structure that includes
567 some function pointers, and some common data, in the style of a C++
568 vtable. There is also room in there for converter-specific data. LMBCS
569 uses that converter-specific data to keep track of the 12 subconverters
570 we use, the optimization group, and the group (if any) that matches the
571 locale. We have one structure instantiated for each of the 12 possible
572 optimization groups. To avoid typos & to avoid boring the reader, we
573 put the declarations of these structures and functions into macros. To see
574 the definitions of these structures, see unicode\ucnv_bld.h
575 */
576
577 typedef struct
578 {
579 UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1]; /* Converter per Opt. grp. */
580 uint8_t OptGroup; /* default Opt. grp. for this LMBCS session */
581 uint8_t localeConverterIndex; /* reasonable locale match for index */
582 }
583 UConverterDataLMBCS;
584
585 U_CDECL_BEGIN
586 static void U_CALLCONV _LMBCSClose(UConverter * _this);
587 U_CDECL_END
588
589 #define DECLARE_LMBCS_DATA(n) \
590 static const UConverterImpl _LMBCSImpl##n={\
591 UCNV_LMBCS_##n,\
592 NULL,NULL,\
593 _LMBCSOpen##n,\
594 _LMBCSClose,\
595 NULL,\
596 _LMBCSToUnicodeWithOffsets,\
597 _LMBCSToUnicodeWithOffsets,\
598 _LMBCSFromUnicode,\
599 _LMBCSFromUnicode,\
600 NULL,\
601 NULL,\
602 NULL,\
603 NULL,\
604 _LMBCSSafeClone,\
605 ucnv_getCompleteUnicodeSet,\
606 NULL,\
607 NULL\
608 };\
609 static const UConverterStaticData _LMBCSStaticData##n={\
610 sizeof(UConverterStaticData),\
611 "LMBCS-" #n,\
612 0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
613 { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
614 };\
615 const UConverterSharedData _LMBCSData##n= \
616 UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_LMBCSStaticData##n, &_LMBCSImpl##n);
617
618 /* The only function we needed to duplicate 12 times was the 'open'
619 function, which will do basically the same thing except set a different
620 optimization group. So, we put the common stuff into a worker function,
621 and set up another macro to stamp out the 12 open functions:*/
622 #define DEFINE_LMBCS_OPEN(n) \
623 static void U_CALLCONV \
624 _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
625 { _LMBCSOpenWorker(_this, pArgs, err, n); }
626
627
628
629 /* Here's the open worker & the common close function */
630 static void
_LMBCSOpenWorker(UConverter * _this,UConverterLoadArgs * pArgs,UErrorCode * err,ulmbcs_byte_t OptGroup)631 _LMBCSOpenWorker(UConverter* _this,
632 UConverterLoadArgs *pArgs,
633 UErrorCode* err,
634 ulmbcs_byte_t OptGroup)
635 {
636 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
637 _this->extraInfo = extraInfo;
638 if(extraInfo != NULL)
639 {
640 UConverterNamePieces stackPieces;
641 UConverterLoadArgs stackArgs= UCNV_LOAD_ARGS_INITIALIZER;
642 ulmbcs_byte_t i;
643
644 uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
645
646 stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
647
648 for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
649 {
650 if(OptGroupByteToCPName[i] != NULL) {
651 extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err);
652 }
653 }
654
655 if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) {
656 _LMBCSClose(_this);
657 return;
658 }
659 extraInfo->OptGroup = OptGroup;
660 extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale);
661 }
662 else
663 {
664 *err = U_MEMORY_ALLOCATION_ERROR;
665 }
666 }
667
668 U_CDECL_BEGIN
669 static void U_CALLCONV
_LMBCSClose(UConverter * _this)670 _LMBCSClose(UConverter * _this)
671 {
672 if (_this->extraInfo != NULL)
673 {
674 ulmbcs_byte_t Ix;
675 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
676
677 for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
678 {
679 if (extraInfo->OptGrpConverter[Ix] != NULL)
680 ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
681 }
682 if (!_this->isExtraLocal) {
683 uprv_free (_this->extraInfo);
684 _this->extraInfo = NULL;
685 }
686 }
687 }
688
689 typedef struct LMBCSClone {
690 UConverter cnv;
691 UConverterDataLMBCS lmbcs;
692 } LMBCSClone;
693
694 static UConverter * U_CALLCONV
_LMBCSSafeClone(const UConverter * cnv,void * stackBuffer,int32_t * pBufferSize,UErrorCode * status)695 _LMBCSSafeClone(const UConverter *cnv,
696 void *stackBuffer,
697 int32_t *pBufferSize,
698 UErrorCode *status) {
699 (void)status;
700 LMBCSClone *newLMBCS;
701 UConverterDataLMBCS *extraInfo;
702 int32_t i;
703
704 if(*pBufferSize<=0) {
705 *pBufferSize=(int32_t)sizeof(LMBCSClone);
706 return NULL;
707 }
708
709 extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
710 newLMBCS=(LMBCSClone *)stackBuffer;
711
712 /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
713
714 uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
715
716 /* share the subconverters */
717 for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
718 if(extraInfo->OptGrpConverter[i] != NULL) {
719 ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
720 }
721 }
722
723 newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
724 newLMBCS->cnv.isExtraLocal = TRUE;
725 return &newLMBCS->cnv;
726 }
727
728 /*
729 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
730 * which added all code points except for U+F6xx
731 * because those cannot be represented in the Unicode group.
732 * However, it turns out that windows-950 has roundtrips for all of U+F6xx
733 * which means that LMBCS can convert all Unicode code points after all.
734 * We now simply use ucnv_getCompleteUnicodeSet().
735 *
736 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
737 */
738
739 /*
740 Here's the basic helper function that we use when converting from
741 Unicode to LMBCS, and we suspect that a Unicode character will fit into
742 one of the 12 groups. The return value is the number of bytes written
743 starting at pStartLMBCS (if any).
744 */
745
746 static size_t
LMBCSConversionWorker(UConverterDataLMBCS * extraInfo,ulmbcs_byte_t group,ulmbcs_byte_t * pStartLMBCS,UChar * pUniChar,ulmbcs_byte_t * lastConverterIndex,UBool * groups_tried)747 LMBCSConversionWorker (
748 UConverterDataLMBCS * extraInfo, /* subconverters, opt & locale groups */
749 ulmbcs_byte_t group, /* The group to try */
750 ulmbcs_byte_t * pStartLMBCS, /* where to put the results */
751 UChar * pUniChar, /* The input unicode character */
752 ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
753 UBool * groups_tried /* output: track any unsuccessful groups */
754 )
755 {
756 ulmbcs_byte_t * pLMBCS = pStartLMBCS;
757 UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
758
759 int bytesConverted;
760 uint32_t value;
761 ulmbcs_byte_t firstByte;
762
763 U_ASSERT(xcnv);
764 U_ASSERT(group<ULMBCS_GRP_UNICODE);
765
766 bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
767
768 /* get the first result byte */
769 if(bytesConverted > 0) {
770 firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
771 } else {
772 /* most common failure mode is an unassigned character */
773 groups_tried[group] = TRUE;
774 return 0;
775 }
776
777 *lastConverterIndex = group;
778
779 /* All initial byte values in lower ascii range should have been caught by now,
780 except with the exception group.
781 */
782 U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
783
784 /* use converted data: first write 0, 1 or two group bytes */
785 if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
786 {
787 *pLMBCS++ = group;
788 if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
789 {
790 *pLMBCS++ = group;
791 }
792 }
793
794 /* don't emit control chars */
795 if ( bytesConverted == 1 && firstByte < 0x20 )
796 return 0;
797
798
799 /* then move over the converted data */
800 switch(bytesConverted)
801 {
802 case 4:
803 *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
804 U_FALLTHROUGH;
805 case 3:
806 *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
807 U_FALLTHROUGH;
808 case 2:
809 *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
810 U_FALLTHROUGH;
811 case 1:
812 *pLMBCS++ = (ulmbcs_byte_t)value;
813 U_FALLTHROUGH;
814 default:
815 /* will never occur */
816 break;
817 }
818
819 return (pLMBCS - pStartLMBCS);
820 }
821
822
823 /* This is a much simpler version of above, when we
824 know we are writing LMBCS using the Unicode group
825 */
826 static size_t
LMBCSConvertUni(ulmbcs_byte_t * pLMBCS,UChar uniChar)827 LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
828 {
829 /* encode into LMBCS Unicode range */
830 uint8_t LowCh = (uint8_t)(uniChar & 0x00FF);
831 uint8_t HighCh = (uint8_t)(uniChar >> 8);
832
833 *pLMBCS++ = ULMBCS_GRP_UNICODE;
834
835 if (LowCh == 0)
836 {
837 *pLMBCS++ = ULMBCS_UNICOMPATZERO;
838 *pLMBCS++ = HighCh;
839 }
840 else
841 {
842 *pLMBCS++ = HighCh;
843 *pLMBCS++ = LowCh;
844 }
845 return ULMBCS_UNICODE_SIZE;
846 }
847
848
849
850 /* The main Unicode to LMBCS conversion function */
851 static void U_CALLCONV
_LMBCSFromUnicode(UConverterFromUnicodeArgs * args,UErrorCode * err)852 _LMBCSFromUnicode(UConverterFromUnicodeArgs* args,
853 UErrorCode* err)
854 {
855 ulmbcs_byte_t lastConverterIndex = 0;
856 UChar uniChar;
857 ulmbcs_byte_t LMBCS[ULMBCS_CHARSIZE_MAX];
858 ulmbcs_byte_t * pLMBCS;
859 int32_t bytes_written;
860 UBool groups_tried[ULMBCS_GRP_LAST+1];
861 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
862 int sourceIndex = 0;
863
864 /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
865 If that succeeds, see if it will all fit into the target & copy it over
866 if it does.
867
868 We try conversions in the following order:
869
870 1. Single-byte ascii & special fixed control chars (&null)
871 2. Look up group in table & try that (could be
872 A) Unicode group
873 B) control group,
874 C) national encoding,
875 or ambiguous SBCS or MBCS group (on to step 4...)
876
877 3. If its ambiguous, try this order:
878 A) The optimization group
879 B) The locale group
880 C) The last group that succeeded with this string.
881 D) every other group that's relevent (single or double)
882 E) If its single-byte ambiguous, try the exceptions group
883
884 4. And as a grand fallback: Unicode
885 */
886
887 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
888 ulmbcs_byte_t OldConverterIndex = 0;
889
890 while (args->source < args->sourceLimit && !U_FAILURE(*err))
891 {
892 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
893 OldConverterIndex = extraInfo->localeConverterIndex;
894
895 if (args->target >= args->targetLimit)
896 {
897 *err = U_BUFFER_OVERFLOW_ERROR;
898 break;
899 }
900 uniChar = *(args->source);
901 bytes_written = 0;
902 pLMBCS = LMBCS;
903
904 /* check cases in rough order of how common they are, for speed */
905
906 /* single byte matches: strategy 1 */
907 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
908 if((uniChar>=0x80) && (uniChar<=0xff)
909 /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7)
910 &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8))
911 {
912 extraInfo->localeConverterIndex = ULMBCS_GRP_L1;
913 }
914 if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
915 uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
916 uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
917 )
918 {
919 *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
920 bytes_written = 1;
921 }
922
923
924 if (!bytes_written)
925 {
926 /* Check by UNICODE range (Strategy 2) */
927 ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
928
929 if (group == ULMBCS_GRP_UNICODE) /* (Strategy 2A) */
930 {
931 pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
932
933 bytes_written = (int32_t)(pLMBCS - LMBCS);
934 }
935 else if (group == ULMBCS_GRP_CTRL) /* (Strategy 2B) */
936 {
937 /* Handle control characters here */
938 if (uniChar <= ULMBCS_C0END)
939 {
940 *pLMBCS++ = ULMBCS_GRP_CTRL;
941 *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
942 }
943 else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
944 {
945 *pLMBCS++ = ULMBCS_GRP_CTRL;
946 *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
947 }
948 bytes_written = (int32_t)(pLMBCS - LMBCS);
949 }
950 else if (group < ULMBCS_GRP_UNICODE) /* (Strategy 2C) */
951 {
952 /* a specific converter has been identified - use it */
953 bytes_written = (int32_t)LMBCSConversionWorker (
954 extraInfo, group, pLMBCS, &uniChar,
955 &lastConverterIndex, groups_tried);
956 }
957 if (!bytes_written) /* the ambiguous group cases (Strategy 3) */
958 {
959 uprv_memset(groups_tried, 0, sizeof(groups_tried));
960
961 /* check for non-default optimization group (Strategy 3A )*/
962 if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup)))
963 {
964 /*zhujin: upgrade, merge #39299 here (Lotus) */
965 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
966
967 if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START)
968 {
969 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
970 ULMBCS_GRP_L1, pLMBCS, &uniChar,
971 &lastConverterIndex, groups_tried);
972
973 if(!bytes_written)
974 {
975 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
976 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
977 &lastConverterIndex, groups_tried);
978 }
979 if(!bytes_written)
980 {
981 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
982 extraInfo->localeConverterIndex, pLMBCS, &uniChar,
983 &lastConverterIndex, groups_tried);
984 }
985 }
986 else
987 {
988 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
989 extraInfo->localeConverterIndex, pLMBCS, &uniChar,
990 &lastConverterIndex, groups_tried);
991 }
992 }
993 /* check for locale optimization group (Strategy 3B) */
994 if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
995 {
996 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
997 extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
998 }
999 /* check for last optimization group used for this string (Strategy 3C) */
1000 if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
1001 {
1002 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1003 lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
1004 }
1005 if (!bytes_written)
1006 {
1007 /* just check every possible matching converter (Strategy 3D) */
1008 ulmbcs_byte_t grp_start;
1009 ulmbcs_byte_t grp_end;
1010 ulmbcs_byte_t grp_ix;
1011 grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1012 ? ULMBCS_DOUBLEOPTGROUP_START
1013 : ULMBCS_GRP_L1);
1014 grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1015 ? ULMBCS_GRP_LAST
1016 : ULMBCS_GRP_TH);
1017 if(group == ULMBCS_AMBIGUOUS_ALL)
1018 {
1019 grp_start = ULMBCS_GRP_L1;
1020 grp_end = ULMBCS_GRP_LAST;
1021 }
1022 for (grp_ix = grp_start;
1023 grp_ix <= grp_end && !bytes_written;
1024 grp_ix++)
1025 {
1026 if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
1027 {
1028 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1029 grp_ix, pLMBCS, &uniChar,
1030 &lastConverterIndex, groups_tried);
1031 }
1032 }
1033 /* a final conversion fallback to the exceptions group if its likely
1034 to be single byte (Strategy 3E) */
1035 if (!bytes_written && grp_start == ULMBCS_GRP_L1)
1036 {
1037 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1038 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
1039 &lastConverterIndex, groups_tried);
1040 }
1041 }
1042 /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1043 if (!bytes_written)
1044 {
1045
1046 pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
1047 bytes_written = (int32_t)(pLMBCS - LMBCS);
1048 }
1049 }
1050 }
1051
1052 /* we have a translation. increment source and write as much as posible to target */
1053 args->source++;
1054 pLMBCS = LMBCS;
1055 while (args->target < args->targetLimit && bytes_written--)
1056 {
1057 *(args->target)++ = *pLMBCS++;
1058 if (args->offsets)
1059 {
1060 *(args->offsets)++ = sourceIndex;
1061 }
1062 }
1063 sourceIndex++;
1064 if (bytes_written > 0)
1065 {
1066 /* write any bytes that didn't fit in target to the error buffer,
1067 common code will move this to target if we get called back with
1068 enough target room
1069 */
1070 uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
1071 *err = U_BUFFER_OVERFLOW_ERROR;
1072 args->converter->charErrorBufferLength = (int8_t)bytes_written;
1073 while (bytes_written--)
1074 {
1075 *pErrorBuffer++ = *pLMBCS++;
1076 }
1077 }
1078 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1079 extraInfo->localeConverterIndex = OldConverterIndex;
1080 }
1081 }
1082
1083
1084 /* Now, the Unicode from LMBCS section */
1085
1086
1087 /* A function to call when we are looking at the Unicode group byte in LMBCS */
1088 static UChar
GetUniFromLMBCSUni(char const ** ppLMBCSin)1089 GetUniFromLMBCSUni(char const ** ppLMBCSin) /* Called with LMBCS-style Unicode byte stream */
1090 {
1091 uint8_t HighCh = *(*ppLMBCSin)++; /* Big-endian Unicode in LMBCS compatibility group*/
1092 uint8_t LowCh = *(*ppLMBCSin)++;
1093
1094 if (HighCh == ULMBCS_UNICOMPATZERO )
1095 {
1096 HighCh = LowCh;
1097 LowCh = 0; /* zero-byte in LSB special character */
1098 }
1099 return (UChar)((HighCh << 8) | LowCh);
1100 }
1101
1102
1103
1104 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1105 bytes left in source up to sourceLimit.Errors appropriately if not.
1106 If we reach the limit, then update the source pointer to there to consume
1107 all input as required by ICU converter semantics.
1108 */
1109
1110 #define CHECK_SOURCE_LIMIT(index) UPRV_BLOCK_MACRO_BEGIN { \
1111 if (args->source+index > args->sourceLimit) { \
1112 *err = U_TRUNCATED_CHAR_FOUND; \
1113 args->source = args->sourceLimit; \
1114 return 0xffff; \
1115 } \
1116 } UPRV_BLOCK_MACRO_END
1117
1118 /* Return the Unicode representation for the current LMBCS character */
1119
1120 static UChar32 U_CALLCONV
_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs * args,UErrorCode * err)1121 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs* args,
1122 UErrorCode* err)
1123 {
1124 UChar32 uniChar = 0; /* an output UNICODE char */
1125 ulmbcs_byte_t CurByte; /* A byte from the input stream */
1126
1127 /* error check */
1128 if (args->source >= args->sourceLimit)
1129 {
1130 *err = U_ILLEGAL_ARGUMENT_ERROR;
1131 return 0xffff;
1132 }
1133 /* Grab first byte & save address for error recovery */
1134 CurByte = *((ulmbcs_byte_t *) (args->source++));
1135
1136 /*
1137 * at entry of each if clause:
1138 * 1. 'CurByte' points at the first byte of a LMBCS character
1139 * 2. '*source'points to the next byte of the source stream after 'CurByte'
1140 *
1141 * the job of each if clause is:
1142 * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1143 * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1144 */
1145
1146 /* First lets check the simple fixed values. */
1147
1148 if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1149 || (CurByte == 0)
1150 || CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1151 || CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1152 {
1153 uniChar = CurByte;
1154 }
1155 else
1156 {
1157 UConverterDataLMBCS * extraInfo;
1158 ulmbcs_byte_t group;
1159 UConverterSharedData *cnv;
1160
1161 if (CurByte == ULMBCS_GRP_CTRL) /* Control character group - no opt group update */
1162 {
1163 ulmbcs_byte_t C0C1byte;
1164 CHECK_SOURCE_LIMIT(1);
1165 C0C1byte = *(args->source)++;
1166 uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1167 }
1168 else
1169 if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1170 {
1171 CHECK_SOURCE_LIMIT(2);
1172
1173 /* don't check for error indicators fffe/ffff below */
1174 return GetUniFromLMBCSUni(&(args->source));
1175 }
1176 else if (CurByte <= ULMBCS_CTRLOFFSET)
1177 {
1178 group = CurByte; /* group byte is in the source */
1179 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1180 if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1181 {
1182 /* this is not a valid group byte - no converter*/
1183 *err = U_INVALID_CHAR_FOUND;
1184 }
1185 else if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1186 {
1187
1188 CHECK_SOURCE_LIMIT(2);
1189
1190 /* check for LMBCS doubled-group-byte case */
1191 if (*args->source == group) {
1192 /* single byte */
1193 ++args->source;
1194 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1195 ++args->source;
1196 } else {
1197 /* double byte */
1198 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1199 args->source += 2;
1200 }
1201 }
1202 else { /* single byte conversion */
1203 CHECK_SOURCE_LIMIT(1);
1204 CurByte = *(args->source)++;
1205
1206 if (CurByte >= ULMBCS_C1START)
1207 {
1208 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1209 }
1210 else
1211 {
1212 /* The non-optimizable oddballs where there is an explicit byte
1213 * AND the second byte is not in the upper ascii range
1214 */
1215 char bytes[2];
1216
1217 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1218 cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1219
1220 /* Lookup value must include opt group */
1221 bytes[0] = group;
1222 bytes[1] = CurByte;
1223 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1224 }
1225 }
1226 }
1227 else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1228 {
1229 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1230 group = extraInfo->OptGroup;
1231 cnv = extraInfo->OptGrpConverter[group];
1232 if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1233 {
1234 if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1235 {
1236 CHECK_SOURCE_LIMIT(0);
1237
1238 /* let the MBCS conversion consume CurByte again */
1239 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1240 }
1241 else
1242 {
1243 CHECK_SOURCE_LIMIT(1);
1244 /* let the MBCS conversion consume CurByte again */
1245 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1246 ++args->source;
1247 }
1248 }
1249 else /* single byte conversion */
1250 {
1251 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1252 }
1253 }
1254 }
1255 return uniChar;
1256 }
1257
1258
1259 /* The exported function that converts lmbcs to one or more
1260 UChars - currently UTF-16
1261 */
1262 static void U_CALLCONV
_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs * args,UErrorCode * err)1263 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs* args,
1264 UErrorCode* err)
1265 {
1266 char LMBCS [ULMBCS_CHARSIZE_MAX];
1267 UChar uniChar; /* one output UNICODE char */
1268 const char * saveSource; /* beginning of current code point */
1269 const char * pStartLMBCS = args->source; /* beginning of whole string */
1270 const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1271 int8_t savebytes = 0;
1272
1273 /* Process from source to limit, or until error */
1274 while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1275 {
1276 saveSource = args->source; /* beginning of current code point */
1277
1278 if (args->converter->toULength) /* reassemble char from previous call */
1279 {
1280 const char *saveSourceLimit;
1281 size_t size_old = args->converter->toULength;
1282
1283 /* limit from source is either remainder of temp buffer, or user limit on source */
1284 size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1285 size_t size_new_maybe_2 = args->sourceLimit - args->source;
1286 size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1287
1288
1289 uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1290 uprv_memcpy(LMBCS + size_old, args->source, size_new);
1291 saveSourceLimit = args->sourceLimit;
1292 args->source = errSource = LMBCS;
1293 args->sourceLimit = LMBCS+size_old+size_new;
1294 savebytes = (int8_t)(size_old+size_new);
1295 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1296 args->source = saveSource + ((args->source - LMBCS) - size_old);
1297 args->sourceLimit = saveSourceLimit;
1298
1299 if (*err == U_TRUNCATED_CHAR_FOUND)
1300 {
1301 /* evil special case: source buffers so small a char spans more than 2 buffers */
1302 args->converter->toULength = savebytes;
1303 uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1304 args->source = args->sourceLimit;
1305 *err = U_ZERO_ERROR;
1306 return;
1307 }
1308 else
1309 {
1310 /* clear the partial-char marker */
1311 args->converter->toULength = 0;
1312 }
1313 }
1314 else
1315 {
1316 errSource = saveSource;
1317 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1318 savebytes = (int8_t)(args->source - saveSource);
1319 }
1320 if (U_SUCCESS(*err))
1321 {
1322 if (uniChar < 0xfffe)
1323 {
1324 *(args->target)++ = uniChar;
1325 if(args->offsets)
1326 {
1327 *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS);
1328 }
1329 }
1330 else if (uniChar == 0xfffe)
1331 {
1332 *err = U_INVALID_CHAR_FOUND;
1333 }
1334 else /* if (uniChar == 0xffff) */
1335 {
1336 *err = U_ILLEGAL_CHAR_FOUND;
1337 }
1338 }
1339 }
1340 /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1341 if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1342 {
1343 *err = U_BUFFER_OVERFLOW_ERROR;
1344 }
1345 else if (U_FAILURE(*err))
1346 {
1347 /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1348 args->converter->toULength = savebytes;
1349 if (savebytes > 0) {
1350 uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1351 }
1352 if (*err == U_TRUNCATED_CHAR_FOUND) {
1353 *err = U_ZERO_ERROR;
1354 }
1355 }
1356 }
1357
1358 /* And now, the macroized declarations of data & functions: */
1359 DEFINE_LMBCS_OPEN(1)
1360 DEFINE_LMBCS_OPEN(2)
1361 DEFINE_LMBCS_OPEN(3)
1362 DEFINE_LMBCS_OPEN(4)
1363 DEFINE_LMBCS_OPEN(5)
1364 DEFINE_LMBCS_OPEN(6)
1365 DEFINE_LMBCS_OPEN(8)
1366 DEFINE_LMBCS_OPEN(11)
1367 DEFINE_LMBCS_OPEN(16)
1368 DEFINE_LMBCS_OPEN(17)
1369 DEFINE_LMBCS_OPEN(18)
1370 DEFINE_LMBCS_OPEN(19)
1371
1372
1373 DECLARE_LMBCS_DATA(1)
1374 DECLARE_LMBCS_DATA(2)
1375 DECLARE_LMBCS_DATA(3)
1376 DECLARE_LMBCS_DATA(4)
1377 DECLARE_LMBCS_DATA(5)
1378 DECLARE_LMBCS_DATA(6)
1379 DECLARE_LMBCS_DATA(8)
1380 DECLARE_LMBCS_DATA(11)
1381 DECLARE_LMBCS_DATA(16)
1382 DECLARE_LMBCS_DATA(17)
1383 DECLARE_LMBCS_DATA(18)
1384 DECLARE_LMBCS_DATA(19)
1385
1386 U_CDECL_END
1387
1388 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
1389