1 // © 2017 and later: Unicode, Inc. and others. 2 // License & terms of use: http://www.unicode.org/copyright.html 3 4 #include "unicode/utypes.h" 5 6 #if !UCONFIG_NO_FORMATTING 7 #ifndef __NUMBER_DECIMALQUANTITY_H__ 8 #define __NUMBER_DECIMALQUANTITY_H__ 9 10 #include <cstdint> 11 #include "unicode/umachine.h" 12 #include "standardplural.h" 13 #include "plurrule_impl.h" 14 #include "number_types.h" 15 16 U_NAMESPACE_BEGIN namespace number { 17 namespace impl { 18 19 // Forward-declare (maybe don't want number_utils.h included here): 20 class DecNum; 21 22 /** 23 * An class for representing a number to be processed by the decimal formatting pipeline. Includes 24 * methods for rounding, plural rules, and decimal digit extraction. 25 * 26 * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate 27 * object holding state during a pass through the decimal formatting pipeline. 28 * 29 * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD). 30 * 31 * <p>Java has multiple implementations for testing, but C++ has only one implementation. 32 */ 33 class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory { 34 public: 35 /** Copy constructor. */ 36 DecimalQuantity(const DecimalQuantity &other); 37 38 /** Move constructor. */ 39 DecimalQuantity(DecimalQuantity &&src) U_NOEXCEPT; 40 41 DecimalQuantity(); 42 43 ~DecimalQuantity() override; 44 45 /** 46 * Sets this instance to be equal to another instance. 47 * 48 * @param other The instance to copy from. 49 */ 50 DecimalQuantity &operator=(const DecimalQuantity &other); 51 52 /** Move assignment */ 53 DecimalQuantity &operator=(DecimalQuantity&& src) U_NOEXCEPT; 54 55 /** 56 * Sets the minimum integer digits that this {@link DecimalQuantity} should generate. 57 * This method does not perform rounding. 58 * 59 * @param minInt The minimum number of integer digits. 60 */ 61 void setMinInteger(int32_t minInt); 62 63 /** 64 * Sets the minimum fraction digits that this {@link DecimalQuantity} should generate. 65 * This method does not perform rounding. 66 * 67 * @param minFrac The minimum number of fraction digits. 68 */ 69 void setMinFraction(int32_t minFrac); 70 71 /** 72 * Truncates digits from the upper magnitude of the number in order to satisfy the 73 * specified maximum number of integer digits. 74 * 75 * @param maxInt The maximum number of integer digits. 76 */ 77 void applyMaxInteger(int32_t maxInt); 78 79 /** 80 * Rounds the number to a specified interval, such as 0.05. 81 * 82 * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead. 83 * 84 * @param roundingIncrement The increment to which to round. 85 * @param roundingMode The {@link RoundingMode} to use if rounding is necessary. 86 */ 87 void roundToIncrement(double roundingIncrement, RoundingMode roundingMode, 88 UErrorCode& status); 89 90 /** Removes all fraction digits. */ 91 void truncate(); 92 93 /** 94 * Rounds the number to the nearest multiple of 5 at the specified magnitude. 95 * For example, when magnitude == -2, this performs rounding to the nearest 0.05. 96 * 97 * @param magnitude The magnitude at which the digit should become either 0 or 5. 98 * @param roundingMode Rounding strategy. 99 */ 100 void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status); 101 102 /** 103 * Rounds the number to a specified magnitude (power of ten). 104 * 105 * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will 106 * round to 2 decimal places. 107 * @param roundingMode The {@link RoundingMode} to use if rounding is necessary. 108 */ 109 void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status); 110 111 /** 112 * Rounds the number to an infinite number of decimal points. This has no effect except for 113 * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation. 114 */ 115 void roundToInfinity(); 116 117 /** 118 * Multiply the internal value. Uses decNumber. 119 * 120 * @param multiplicand The value by which to multiply. 121 */ 122 void multiplyBy(const DecNum& multiplicand, UErrorCode& status); 123 124 /** 125 * Divide the internal value. Uses decNumber. 126 * 127 * @param multiplicand The value by which to multiply. 128 */ 129 void divideBy(const DecNum& divisor, UErrorCode& status); 130 131 /** Flips the sign from positive to negative and back. */ 132 void negate(); 133 134 /** 135 * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling 136 * this method with delta=-3 will change the value to "1.23456". 137 * 138 * @param delta The number of magnitudes of ten to change by. 139 * @return true if integer overflow occured; false otherwise. 140 */ 141 bool adjustMagnitude(int32_t delta); 142 143 /** 144 * @return The power of ten corresponding to the most significant nonzero digit. 145 * The number must not be zero. 146 */ 147 int32_t getMagnitude() const; 148 149 /** 150 * @return Whether the value represented by this {@link DecimalQuantity} is 151 * zero, infinity, or NaN. 152 */ 153 bool isZeroish() const; 154 155 /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */ 156 bool isNegative() const; 157 158 /** @return The appropriate value from the Signum enum. */ 159 Signum signum() const; 160 161 /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */ 162 bool isInfinite() const U_OVERRIDE; 163 164 /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */ 165 bool isNaN() const U_OVERRIDE; 166 167 /** @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error. */ 168 int64_t toLong(bool truncateIfOverflow = false) const; 169 170 uint64_t toFractionLong(bool includeTrailingZeros) const; 171 172 /** 173 * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity. 174 * @param ignoreFraction if true, silently ignore digits after the decimal place. 175 */ 176 bool fitsInLong(bool ignoreFraction = false) const; 177 178 /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */ 179 double toDouble() const; 180 181 /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */ 182 void toDecNum(DecNum& output, UErrorCode& status) const; 183 184 DecimalQuantity &setToInt(int32_t n); 185 186 DecimalQuantity &setToLong(int64_t n); 187 188 DecimalQuantity &setToDouble(double n); 189 190 /** decNumber is similar to BigDecimal in Java. */ 191 DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status); 192 193 /** Internal method if the caller already has a DecNum. */ 194 DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status); 195 196 /** 197 * Appends a digit, optionally with one or more leading zeros, to the end of the value represented 198 * by this DecimalQuantity. 199 * 200 * <p>The primary use of this method is to construct numbers during a parsing loop. It allows 201 * parsing to take advantage of the digit list infrastructure primarily designed for formatting. 202 * 203 * @param value The digit to append. 204 * @param leadingZeros The number of zeros to append before the digit. For example, if the value 205 * in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes 206 * 12.304. 207 * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the 208 * new digit. If false, append to the end like a fraction digit. If true, there must not be 209 * any fraction digits already in the number. 210 * @internal 211 * @deprecated This API is ICU internal only. 212 */ 213 void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger); 214 215 double getPluralOperand(PluralOperand operand) const U_OVERRIDE; 216 217 bool hasIntegerValue() const U_OVERRIDE; 218 219 /** 220 * Gets the digit at the specified magnitude. For example, if the represented number is 12.3, 221 * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1. 222 * 223 * @param magnitude The magnitude of the digit. 224 * @return The digit at the specified magnitude. 225 */ 226 int8_t getDigit(int32_t magnitude) const; 227 228 /** 229 * Gets the largest power of ten that needs to be displayed. The value returned by this function 230 * will be bounded between minInt and maxInt. 231 * 232 * @return The highest-magnitude digit to be displayed. 233 */ 234 int32_t getUpperDisplayMagnitude() const; 235 236 /** 237 * Gets the smallest power of ten that needs to be displayed. The value returned by this function 238 * will be bounded between -minFrac and -maxFrac. 239 * 240 * @return The lowest-magnitude digit to be displayed. 241 */ 242 int32_t getLowerDisplayMagnitude() const; 243 244 int32_t fractionCount() const; 245 246 int32_t fractionCountWithoutTrailingZeros() const; 247 248 void clear(); 249 250 /** This method is for internal testing only. */ 251 uint64_t getPositionFingerprint() const; 252 253 // /** 254 // * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction 255 // * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing 256 // * happens. 257 // * 258 // * @param fp The {@link UFieldPosition} to populate. 259 // */ 260 // void populateUFieldPosition(FieldPosition fp); 261 262 /** 263 * Checks whether the bytes stored in this instance are all valid. For internal unit testing only. 264 * 265 * @return An error message if this instance is invalid, or null if this instance is healthy. 266 */ 267 const char16_t* checkHealth() const; 268 269 UnicodeString toString() const; 270 271 /** Returns the string in standard exponential notation. */ 272 UnicodeString toScientificString() const; 273 274 /** Returns the string without exponential notation. Slightly slower than toScientificString(). */ 275 UnicodeString toPlainString() const; 276 277 /** Visible for testing */ isUsingBytes()278 inline bool isUsingBytes() { return usingBytes; } 279 280 /** Visible for testing */ isExplicitExactDouble()281 inline bool isExplicitExactDouble() { return explicitExactDouble; } 282 283 bool operator==(const DecimalQuantity& other) const; 284 285 inline bool operator!=(const DecimalQuantity& other) const { 286 return !(*this == other); 287 } 288 289 /** 290 * Bogus flag for when a DecimalQuantity is stored on the stack. 291 */ 292 bool bogus = false; 293 294 private: 295 /** 296 * The power of ten corresponding to the least significant digit in the BCD. For example, if this 297 * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2. 298 * 299 * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of 300 * digits after the decimal place, which is the negative of our definition of scale. 301 */ 302 int32_t scale; 303 304 /** 305 * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The 306 * maximum precision is 16 since a long can hold only 16 digits. 307 * 308 * <p>This value must be re-calculated whenever the value in bcd changes by using {@link 309 * #computePrecisionAndCompact()}. 310 */ 311 int32_t precision; 312 313 /** 314 * A bitmask of properties relating to the number represented by this object. 315 * 316 * @see #NEGATIVE_FLAG 317 * @see #INFINITY_FLAG 318 * @see #NAN_FLAG 319 */ 320 int8_t flags; 321 322 // The following three fields relate to the double-to-ascii fast path algorithm. 323 // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The 324 // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process 325 // of rounding the number ensures that the converted digits are correct, falling back to a slow- 326 // path algorithm if required. Therefore, if a DecimalQuantity is constructed from a double, it 327 // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If 328 // you don't round, assertions will fail in certain other methods if you try calling them. 329 330 /** 331 * Whether the value in the BCD comes from the double fast path without having been rounded to 332 * ensure correctness 333 */ 334 UBool isApproximate; 335 336 /** 337 * The original number provided by the user and which is represented in BCD. Used when we need to 338 * re-compute the BCD for an exact double representation. 339 */ 340 double origDouble; 341 342 /** 343 * The change in magnitude relative to the original double. Used when we need to re-compute the 344 * BCD for an exact double representation. 345 */ 346 int32_t origDelta; 347 348 // Positions to keep track of leading and trailing zeros. 349 // lReqPos is the magnitude of the first required leading zero. 350 // rReqPos is the magnitude of the last required trailing zero. 351 int32_t lReqPos = 0; 352 int32_t rReqPos = 0; 353 354 /** 355 * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map 356 * to one digit. For example, the number "12345" in BCD is "0x12345". 357 * 358 * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases 359 * like setting the digit to zero. 360 */ 361 union { 362 struct { 363 int8_t *ptr; 364 int32_t len; 365 } bcdBytes; 366 uint64_t bcdLong; 367 } fBCD; 368 369 bool usingBytes = false; 370 371 /** 372 * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if 373 * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise. 374 * Used for testing. 375 */ 376 bool explicitExactDouble = false; 377 378 void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status); 379 380 /** 381 * Returns a single digit from the BCD list. No internal state is changed by calling this method. 382 * 383 * @param position The position of the digit to pop, counted in BCD units from the least 384 * significant digit. If outside the range supported by the implementation, zero is returned. 385 * @return The digit at the specified location. 386 */ 387 int8_t getDigitPos(int32_t position) const; 388 389 /** 390 * Sets the digit in the BCD list. This method only sets the digit; it is the caller's 391 * responsibility to call {@link #compact} after setting the digit. 392 * 393 * @param position The position of the digit to pop, counted in BCD units from the least 394 * significant digit. If outside the range supported by the implementation, an AssertionError 395 * is thrown. 396 * @param value The digit to set at the specified location. 397 */ 398 void setDigitPos(int32_t position, int8_t value); 399 400 /** 401 * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is 402 * the caller's responsibility to do further manipulation and then call {@link #compact}. 403 * 404 * @param numDigits The number of zeros to add. 405 */ 406 void shiftLeft(int32_t numDigits); 407 408 /** 409 * Directly removes digits from the end of the BCD list. 410 * Updates the scale and precision. 411 * 412 * CAUTION: it is the caller's responsibility to call {@link #compact} after this method. 413 */ 414 void shiftRight(int32_t numDigits); 415 416 /** 417 * Directly removes digits from the front of the BCD list. 418 * Updates precision. 419 * 420 * CAUTION: it is the caller's responsibility to call {@link #compact} after this method. 421 */ 422 void popFromLeft(int32_t numDigits); 423 424 /** 425 * Sets the internal representation to zero. Clears any values stored in scale, precision, 426 * hasDouble, origDouble, origDelta, and BCD data. 427 */ 428 void setBcdToZero(); 429 430 /** 431 * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to 432 * be either positive. The internal state is guaranteed to be empty when this method is called. 433 * 434 * @param n The value to consume. 435 */ 436 void readIntToBcd(int32_t n); 437 438 /** 439 * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to 440 * be either positive. The internal state is guaranteed to be empty when this method is called. 441 * 442 * @param n The value to consume. 443 */ 444 void readLongToBcd(int64_t n); 445 446 void readDecNumberToBcd(const DecNum& dn); 447 448 void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point); 449 450 void copyFieldsFrom(const DecimalQuantity& other); 451 452 void copyBcdFrom(const DecimalQuantity &other); 453 454 void moveBcdFrom(DecimalQuantity& src); 455 456 /** 457 * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the 458 * precision. The precision is the number of digits in the number up through the greatest nonzero 459 * digit. 460 * 461 * <p>This method must always be called when bcd changes in order for assumptions to be correct in 462 * methods like {@link #fractionCount()}. 463 */ 464 void compact(); 465 466 void _setToInt(int32_t n); 467 468 void _setToLong(int64_t n); 469 470 void _setToDoubleFast(double n); 471 472 void _setToDecNum(const DecNum& dn, UErrorCode& status); 473 474 void convertToAccurateDouble(); 475 476 /** Ensure that a byte array of at least 40 digits is allocated. */ 477 void ensureCapacity(); 478 479 void ensureCapacity(int32_t capacity); 480 481 /** Switches the internal storage mechanism between the 64-bit long and the byte array. */ 482 void switchStorage(); 483 }; 484 485 } // namespace impl 486 } // namespace number 487 U_NAMESPACE_END 488 489 490 #endif //__NUMBER_DECIMALQUANTITY_H__ 491 492 #endif /* #if !UCONFIG_NO_FORMATTING */ 493