• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 //  This is an example demonstrating how to implement a multi-layer VPx
12 //  encoding scheme based on temporal scalability for video applications
13 //  that benefit from a scalable bitstream.
14 
15 #include <assert.h>
16 #include <math.h>
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <string.h>
20 
21 #include "./vpx_config.h"
22 #include "./y4minput.h"
23 #include "../vpx_ports/vpx_timer.h"
24 #include "vpx/vp8cx.h"
25 #include "vpx/vpx_encoder.h"
26 #include "vpx_ports/bitops.h"
27 
28 #include "../tools_common.h"
29 #include "../video_writer.h"
30 
31 #define ROI_MAP 0
32 
33 #define zero(Dest) memset(&(Dest), 0, sizeof(Dest));
34 
35 static const char *exec_name;
36 
usage_exit(void)37 void usage_exit(void) { exit(EXIT_FAILURE); }
38 
39 // Denoiser states for vp8, for temporal denoising.
40 enum denoiserStateVp8 {
41   kVp8DenoiserOff,
42   kVp8DenoiserOnYOnly,
43   kVp8DenoiserOnYUV,
44   kVp8DenoiserOnYUVAggressive,
45   kVp8DenoiserOnAdaptive
46 };
47 
48 // Denoiser states for vp9, for temporal denoising.
49 enum denoiserStateVp9 {
50   kVp9DenoiserOff,
51   kVp9DenoiserOnYOnly,
52   // For SVC: denoise the top two spatial layers.
53   kVp9DenoiserOnYTwoSpatialLayers
54 };
55 
56 static int mode_to_num_layers[13] = { 1, 2, 2, 3, 3, 3, 3, 5, 2, 3, 3, 3, 3 };
57 
58 // For rate control encoding stats.
59 struct RateControlMetrics {
60   // Number of input frames per layer.
61   int layer_input_frames[VPX_TS_MAX_LAYERS];
62   // Total (cumulative) number of encoded frames per layer.
63   int layer_tot_enc_frames[VPX_TS_MAX_LAYERS];
64   // Number of encoded non-key frames per layer.
65   int layer_enc_frames[VPX_TS_MAX_LAYERS];
66   // Framerate per layer layer (cumulative).
67   double layer_framerate[VPX_TS_MAX_LAYERS];
68   // Target average frame size per layer (per-frame-bandwidth per layer).
69   double layer_pfb[VPX_TS_MAX_LAYERS];
70   // Actual average frame size per layer.
71   double layer_avg_frame_size[VPX_TS_MAX_LAYERS];
72   // Average rate mismatch per layer (|target - actual| / target).
73   double layer_avg_rate_mismatch[VPX_TS_MAX_LAYERS];
74   // Actual encoding bitrate per layer (cumulative).
75   double layer_encoding_bitrate[VPX_TS_MAX_LAYERS];
76   // Average of the short-time encoder actual bitrate.
77   // TODO(marpan): Should we add these short-time stats for each layer?
78   double avg_st_encoding_bitrate;
79   // Variance of the short-time encoder actual bitrate.
80   double variance_st_encoding_bitrate;
81   // Window (number of frames) for computing short-timee encoding bitrate.
82   int window_size;
83   // Number of window measurements.
84   int window_count;
85   int layer_target_bitrate[VPX_MAX_LAYERS];
86 };
87 
88 // Note: these rate control metrics assume only 1 key frame in the
89 // sequence (i.e., first frame only). So for temporal pattern# 7
90 // (which has key frame for every frame on base layer), the metrics
91 // computation will be off/wrong.
92 // TODO(marpan): Update these metrics to account for multiple key frames
93 // in the stream.
set_rate_control_metrics(struct RateControlMetrics * rc,vpx_codec_enc_cfg_t * cfg)94 static void set_rate_control_metrics(struct RateControlMetrics *rc,
95                                      vpx_codec_enc_cfg_t *cfg) {
96   int i = 0;
97   // Set the layer (cumulative) framerate and the target layer (non-cumulative)
98   // per-frame-bandwidth, for the rate control encoding stats below.
99   const double framerate = cfg->g_timebase.den / cfg->g_timebase.num;
100   const int ts_number_layers = cfg->ts_number_layers;
101   rc->layer_framerate[0] = framerate / cfg->ts_rate_decimator[0];
102   rc->layer_pfb[0] =
103       1000.0 * rc->layer_target_bitrate[0] / rc->layer_framerate[0];
104   for (i = 0; i < ts_number_layers; ++i) {
105     if (i > 0) {
106       rc->layer_framerate[i] = framerate / cfg->ts_rate_decimator[i];
107       rc->layer_pfb[i] =
108           1000.0 *
109           (rc->layer_target_bitrate[i] - rc->layer_target_bitrate[i - 1]) /
110           (rc->layer_framerate[i] - rc->layer_framerate[i - 1]);
111     }
112     rc->layer_input_frames[i] = 0;
113     rc->layer_enc_frames[i] = 0;
114     rc->layer_tot_enc_frames[i] = 0;
115     rc->layer_encoding_bitrate[i] = 0.0;
116     rc->layer_avg_frame_size[i] = 0.0;
117     rc->layer_avg_rate_mismatch[i] = 0.0;
118   }
119   rc->window_count = 0;
120   rc->window_size = 15;
121   rc->avg_st_encoding_bitrate = 0.0;
122   rc->variance_st_encoding_bitrate = 0.0;
123   // Target bandwidth for the whole stream.
124   // Set to layer_target_bitrate for highest layer (total bitrate).
125   cfg->rc_target_bitrate = rc->layer_target_bitrate[ts_number_layers - 1];
126 }
127 
printout_rate_control_summary(struct RateControlMetrics * rc,vpx_codec_enc_cfg_t * cfg,int frame_cnt)128 static void printout_rate_control_summary(struct RateControlMetrics *rc,
129                                           vpx_codec_enc_cfg_t *cfg,
130                                           int frame_cnt) {
131   unsigned int i = 0;
132   int tot_num_frames = 0;
133   double perc_fluctuation = 0.0;
134   printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
135   printf("Rate control layer stats for %d layer(s):\n\n",
136          cfg->ts_number_layers);
137   for (i = 0; i < cfg->ts_number_layers; ++i) {
138     const int num_dropped =
139         (i > 0) ? (rc->layer_input_frames[i] - rc->layer_enc_frames[i])
140                 : (rc->layer_input_frames[i] - rc->layer_enc_frames[i] - 1);
141     tot_num_frames += rc->layer_input_frames[i];
142     rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[i] *
143                                     rc->layer_encoding_bitrate[i] /
144                                     tot_num_frames;
145     rc->layer_avg_frame_size[i] =
146         rc->layer_avg_frame_size[i] / rc->layer_enc_frames[i];
147     rc->layer_avg_rate_mismatch[i] =
148         100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[i];
149     printf("For layer#: %d \n", i);
150     printf("Bitrate (target vs actual): %d %f \n", rc->layer_target_bitrate[i],
151            rc->layer_encoding_bitrate[i]);
152     printf("Average frame size (target vs actual): %f %f \n", rc->layer_pfb[i],
153            rc->layer_avg_frame_size[i]);
154     printf("Average rate_mismatch: %f \n", rc->layer_avg_rate_mismatch[i]);
155     printf(
156         "Number of input frames, encoded (non-key) frames, "
157         "and perc dropped frames: %d %d %f \n",
158         rc->layer_input_frames[i], rc->layer_enc_frames[i],
159         100.0 * num_dropped / rc->layer_input_frames[i]);
160     printf("\n");
161   }
162   rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
163   rc->variance_st_encoding_bitrate =
164       rc->variance_st_encoding_bitrate / rc->window_count -
165       (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
166   perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
167                      rc->avg_st_encoding_bitrate;
168   printf("Short-time stats, for window of %d frames: \n", rc->window_size);
169   printf("Average, rms-variance, and percent-fluct: %f %f %f \n",
170          rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate),
171          perc_fluctuation);
172   if ((frame_cnt - 1) != tot_num_frames)
173     die("Error: Number of input frames not equal to output! \n");
174 }
175 
176 #if ROI_MAP
set_roi_map(const char * enc_name,vpx_codec_enc_cfg_t * cfg,vpx_roi_map_t * roi)177 static void set_roi_map(const char *enc_name, vpx_codec_enc_cfg_t *cfg,
178                         vpx_roi_map_t *roi) {
179   unsigned int i, j;
180   int block_size = 0;
181   uint8_t is_vp8 = strncmp(enc_name, "vp8", 3) == 0 ? 1 : 0;
182   uint8_t is_vp9 = strncmp(enc_name, "vp9", 3) == 0 ? 1 : 0;
183   if (!is_vp8 && !is_vp9) {
184     die("unsupported codec.");
185   }
186   zero(*roi);
187 
188   block_size = is_vp9 && !is_vp8 ? 8 : 16;
189 
190   // ROI is based on the segments (4 for vp8, 8 for vp9), smallest unit for
191   // segment is 16x16 for vp8, 8x8 for vp9.
192   roi->rows = (cfg->g_h + block_size - 1) / block_size;
193   roi->cols = (cfg->g_w + block_size - 1) / block_size;
194 
195   // Applies delta QP on the segment blocks, varies from -63 to 63.
196   // Setting to negative means lower QP (better quality).
197   // Below we set delta_q to the extreme (-63) to show strong effect.
198   // VP8 uses the first 4 segments. VP9 uses all 8 segments.
199   zero(roi->delta_q);
200   roi->delta_q[1] = -63;
201 
202   // Applies delta loopfilter strength on the segment blocks, varies from -63 to
203   // 63. Setting to positive means stronger loopfilter. VP8 uses the first 4
204   // segments. VP9 uses all 8 segments.
205   zero(roi->delta_lf);
206 
207   if (is_vp8) {
208     // Applies skip encoding threshold on the segment blocks, varies from 0 to
209     // UINT_MAX. Larger value means more skipping of encoding is possible.
210     // This skip threshold only applies on delta frames.
211     zero(roi->static_threshold);
212   }
213 
214   if (is_vp9) {
215     // Apply skip segment. Setting to 1 means this block will be copied from
216     // previous frame.
217     zero(roi->skip);
218   }
219 
220   if (is_vp9) {
221     // Apply ref frame segment.
222     // -1 : Do not apply this segment.
223     //  0 : Froce using intra.
224     //  1 : Force using last.
225     //  2 : Force using golden.
226     //  3 : Force using alfref but not used in non-rd pickmode for 0 lag.
227     memset(roi->ref_frame, -1, sizeof(roi->ref_frame));
228     roi->ref_frame[1] = 1;
229   }
230 
231   // Use 2 states: 1 is center square, 0 is the rest.
232   roi->roi_map =
233       (uint8_t *)calloc(roi->rows * roi->cols, sizeof(*roi->roi_map));
234   for (i = 0; i < roi->rows; ++i) {
235     for (j = 0; j < roi->cols; ++j) {
236       if (i > (roi->rows >> 2) && i < ((roi->rows * 3) >> 2) &&
237           j > (roi->cols >> 2) && j < ((roi->cols * 3) >> 2)) {
238         roi->roi_map[i * roi->cols + j] = 1;
239       }
240     }
241   }
242 }
243 #endif
244 
245 // Temporal scaling parameters:
246 // NOTE: The 3 prediction frames cannot be used interchangeably due to
247 // differences in the way they are handled throughout the code. The
248 // frames should be allocated to layers in the order LAST, GF, ARF.
249 // Other combinations work, but may produce slightly inferior results.
set_temporal_layer_pattern(int layering_mode,vpx_codec_enc_cfg_t * cfg,int * layer_flags,int * flag_periodicity)250 static void set_temporal_layer_pattern(int layering_mode,
251                                        vpx_codec_enc_cfg_t *cfg,
252                                        int *layer_flags,
253                                        int *flag_periodicity) {
254   switch (layering_mode) {
255     case 0: {
256       // 1-layer.
257       int ids[1] = { 0 };
258       cfg->ts_periodicity = 1;
259       *flag_periodicity = 1;
260       cfg->ts_number_layers = 1;
261       cfg->ts_rate_decimator[0] = 1;
262       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
263       // Update L only.
264       layer_flags[0] =
265           VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
266       break;
267     }
268     case 1: {
269       // 2-layers, 2-frame period.
270       int ids[2] = { 0, 1 };
271       cfg->ts_periodicity = 2;
272       *flag_periodicity = 2;
273       cfg->ts_number_layers = 2;
274       cfg->ts_rate_decimator[0] = 2;
275       cfg->ts_rate_decimator[1] = 1;
276       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
277 #if 1
278       // 0=L, 1=GF, Intra-layer prediction enabled.
279       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF |
280                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF |
281                        VP8_EFLAG_NO_REF_ARF;
282       layer_flags[1] =
283           VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_REF_ARF;
284 #else
285       // 0=L, 1=GF, Intra-layer prediction disabled.
286       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF |
287                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF |
288                        VP8_EFLAG_NO_REF_ARF;
289       layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
290                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_LAST;
291 #endif
292       break;
293     }
294     case 2: {
295       // 2-layers, 3-frame period.
296       int ids[3] = { 0, 1, 1 };
297       cfg->ts_periodicity = 3;
298       *flag_periodicity = 3;
299       cfg->ts_number_layers = 2;
300       cfg->ts_rate_decimator[0] = 3;
301       cfg->ts_rate_decimator[1] = 1;
302       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
303       // 0=L, 1=GF, Intra-layer prediction enabled.
304       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
305                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
306                        VP8_EFLAG_NO_UPD_ARF;
307       layer_flags[1] = layer_flags[2] =
308           VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF |
309           VP8_EFLAG_NO_UPD_LAST;
310       break;
311     }
312     case 3: {
313       // 3-layers, 6-frame period.
314       int ids[6] = { 0, 2, 2, 1, 2, 2 };
315       cfg->ts_periodicity = 6;
316       *flag_periodicity = 6;
317       cfg->ts_number_layers = 3;
318       cfg->ts_rate_decimator[0] = 6;
319       cfg->ts_rate_decimator[1] = 3;
320       cfg->ts_rate_decimator[2] = 1;
321       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
322       // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
323       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
324                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
325                        VP8_EFLAG_NO_UPD_ARF;
326       layer_flags[3] =
327           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
328       layer_flags[1] = layer_flags[2] = layer_flags[4] = layer_flags[5] =
329           VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST;
330       break;
331     }
332     case 4: {
333       // 3-layers, 4-frame period.
334       int ids[4] = { 0, 2, 1, 2 };
335       cfg->ts_periodicity = 4;
336       *flag_periodicity = 4;
337       cfg->ts_number_layers = 3;
338       cfg->ts_rate_decimator[0] = 4;
339       cfg->ts_rate_decimator[1] = 2;
340       cfg->ts_rate_decimator[2] = 1;
341       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
342       // 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled.
343       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
344                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
345                        VP8_EFLAG_NO_UPD_ARF;
346       layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
347                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
348       layer_flags[1] = layer_flags[3] =
349           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
350           VP8_EFLAG_NO_UPD_ARF;
351       break;
352     }
353     case 5: {
354       // 3-layers, 4-frame period.
355       int ids[4] = { 0, 2, 1, 2 };
356       cfg->ts_periodicity = 4;
357       *flag_periodicity = 4;
358       cfg->ts_number_layers = 3;
359       cfg->ts_rate_decimator[0] = 4;
360       cfg->ts_rate_decimator[1] = 2;
361       cfg->ts_rate_decimator[2] = 1;
362       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
363       // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled in layer 1, disabled
364       // in layer 2.
365       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
366                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
367                        VP8_EFLAG_NO_UPD_ARF;
368       layer_flags[2] =
369           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
370       layer_flags[1] = layer_flags[3] =
371           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
372           VP8_EFLAG_NO_UPD_ARF;
373       break;
374     }
375     case 6: {
376       // 3-layers, 4-frame period.
377       int ids[4] = { 0, 2, 1, 2 };
378       cfg->ts_periodicity = 4;
379       *flag_periodicity = 4;
380       cfg->ts_number_layers = 3;
381       cfg->ts_rate_decimator[0] = 4;
382       cfg->ts_rate_decimator[1] = 2;
383       cfg->ts_rate_decimator[2] = 1;
384       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
385       // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
386       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
387                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
388                        VP8_EFLAG_NO_UPD_ARF;
389       layer_flags[2] =
390           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
391       layer_flags[1] = layer_flags[3] =
392           VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
393       break;
394     }
395     case 7: {
396       // NOTE: Probably of academic interest only.
397       // 5-layers, 16-frame period.
398       int ids[16] = { 0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4 };
399       cfg->ts_periodicity = 16;
400       *flag_periodicity = 16;
401       cfg->ts_number_layers = 5;
402       cfg->ts_rate_decimator[0] = 16;
403       cfg->ts_rate_decimator[1] = 8;
404       cfg->ts_rate_decimator[2] = 4;
405       cfg->ts_rate_decimator[3] = 2;
406       cfg->ts_rate_decimator[4] = 1;
407       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
408       layer_flags[0] = VPX_EFLAG_FORCE_KF;
409       layer_flags[1] = layer_flags[3] = layer_flags[5] = layer_flags[7] =
410           layer_flags[9] = layer_flags[11] = layer_flags[13] = layer_flags[15] =
411               VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
412               VP8_EFLAG_NO_UPD_ARF;
413       layer_flags[2] = layer_flags[6] = layer_flags[10] = layer_flags[14] =
414           VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF;
415       layer_flags[4] = layer_flags[12] =
416           VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_ARF;
417       layer_flags[8] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF;
418       break;
419     }
420     case 8: {
421       // 2-layers, with sync point at first frame of layer 1.
422       int ids[2] = { 0, 1 };
423       cfg->ts_periodicity = 2;
424       *flag_periodicity = 8;
425       cfg->ts_number_layers = 2;
426       cfg->ts_rate_decimator[0] = 2;
427       cfg->ts_rate_decimator[1] = 1;
428       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
429       // 0=L, 1=GF.
430       // ARF is used as predictor for all frames, and is only updated on
431       // key frame. Sync point every 8 frames.
432 
433       // Layer 0: predict from L and ARF, update L and G.
434       layer_flags[0] =
435           VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF;
436       // Layer 1: sync point: predict from L and ARF, and update G.
437       layer_flags[1] =
438           VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
439       // Layer 0, predict from L and ARF, update L.
440       layer_flags[2] =
441           VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
442       // Layer 1: predict from L, G and ARF, and update G.
443       layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
444                        VP8_EFLAG_NO_UPD_ENTROPY;
445       // Layer 0.
446       layer_flags[4] = layer_flags[2];
447       // Layer 1.
448       layer_flags[5] = layer_flags[3];
449       // Layer 0.
450       layer_flags[6] = layer_flags[4];
451       // Layer 1.
452       layer_flags[7] = layer_flags[5];
453       break;
454     }
455     case 9: {
456       // 3-layers: Sync points for layer 1 and 2 every 8 frames.
457       int ids[4] = { 0, 2, 1, 2 };
458       cfg->ts_periodicity = 4;
459       *flag_periodicity = 8;
460       cfg->ts_number_layers = 3;
461       cfg->ts_rate_decimator[0] = 4;
462       cfg->ts_rate_decimator[1] = 2;
463       cfg->ts_rate_decimator[2] = 1;
464       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
465       // 0=L, 1=GF, 2=ARF.
466       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
467                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
468                        VP8_EFLAG_NO_UPD_ARF;
469       layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
470                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
471       layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
472                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
473       layer_flags[3] = layer_flags[5] =
474           VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
475       layer_flags[4] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
476                        VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
477       layer_flags[6] =
478           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
479       layer_flags[7] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
480                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_ENTROPY;
481       break;
482     }
483     case 10: {
484       // 3-layers structure where ARF is used as predictor for all frames,
485       // and is only updated on key frame.
486       // Sync points for layer 1 and 2 every 8 frames.
487 
488       int ids[4] = { 0, 2, 1, 2 };
489       cfg->ts_periodicity = 4;
490       *flag_periodicity = 8;
491       cfg->ts_number_layers = 3;
492       cfg->ts_rate_decimator[0] = 4;
493       cfg->ts_rate_decimator[1] = 2;
494       cfg->ts_rate_decimator[2] = 1;
495       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
496       // 0=L, 1=GF, 2=ARF.
497       // Layer 0: predict from L and ARF; update L and G.
498       layer_flags[0] =
499           VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;
500       // Layer 2: sync point: predict from L and ARF; update none.
501       layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF |
502                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
503                        VP8_EFLAG_NO_UPD_ENTROPY;
504       // Layer 1: sync point: predict from L and ARF; update G.
505       layer_flags[2] =
506           VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
507       // Layer 2: predict from L, G, ARF; update none.
508       layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
509                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
510       // Layer 0: predict from L and ARF; update L.
511       layer_flags[4] =
512           VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;
513       // Layer 2: predict from L, G, ARF; update none.
514       layer_flags[5] = layer_flags[3];
515       // Layer 1: predict from L, G, ARF; update G.
516       layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
517       // Layer 2: predict from L, G, ARF; update none.
518       layer_flags[7] = layer_flags[3];
519       break;
520     }
521     case 11: {
522       // 3-layers structure with one reference frame.
523       // This works same as temporal_layering_mode 3.
524       // This was added to compare with vp9_spatial_svc_encoder.
525 
526       // 3-layers, 4-frame period.
527       int ids[4] = { 0, 2, 1, 2 };
528       cfg->ts_periodicity = 4;
529       *flag_periodicity = 4;
530       cfg->ts_number_layers = 3;
531       cfg->ts_rate_decimator[0] = 4;
532       cfg->ts_rate_decimator[1] = 2;
533       cfg->ts_rate_decimator[2] = 1;
534       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
535       // 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled.
536       layer_flags[0] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
537                        VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
538       layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
539                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
540       layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
541                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
542       layer_flags[3] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_ARF |
543                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
544       break;
545     }
546     case 12:
547     default: {
548       // 3-layers structure as in case 10, but no sync/refresh points for
549       // layer 1 and 2.
550       int ids[4] = { 0, 2, 1, 2 };
551       cfg->ts_periodicity = 4;
552       *flag_periodicity = 8;
553       cfg->ts_number_layers = 3;
554       cfg->ts_rate_decimator[0] = 4;
555       cfg->ts_rate_decimator[1] = 2;
556       cfg->ts_rate_decimator[2] = 1;
557       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
558       // 0=L, 1=GF, 2=ARF.
559       // Layer 0: predict from L and ARF; update L.
560       layer_flags[0] =
561           VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;
562       layer_flags[4] = layer_flags[0];
563       // Layer 1: predict from L, G, ARF; update G.
564       layer_flags[2] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
565       layer_flags[6] = layer_flags[2];
566       // Layer 2: predict from L, G, ARF; update none.
567       layer_flags[1] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
568                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
569       layer_flags[3] = layer_flags[1];
570       layer_flags[5] = layer_flags[1];
571       layer_flags[7] = layer_flags[1];
572       break;
573     }
574   }
575 }
576 
main(int argc,char ** argv)577 int main(int argc, char **argv) {
578   VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS] = { NULL };
579   vpx_codec_ctx_t codec;
580   vpx_codec_enc_cfg_t cfg;
581   int frame_cnt = 0;
582   vpx_image_t raw;
583   vpx_codec_err_t res;
584   unsigned int width;
585   unsigned int height;
586   uint32_t error_resilient = 0;
587   int speed;
588   int frame_avail;
589   int got_data;
590   int flags = 0;
591   unsigned int i;
592   int pts = 0;             // PTS starts at 0.
593   int frame_duration = 1;  // 1 timebase tick per frame.
594   int layering_mode = 0;
595   int layer_flags[VPX_TS_MAX_PERIODICITY] = { 0 };
596   int flag_periodicity = 1;
597 #if ROI_MAP
598   vpx_roi_map_t roi;
599 #endif
600   vpx_svc_layer_id_t layer_id;
601   const VpxInterface *encoder = NULL;
602   struct VpxInputContext input_ctx;
603   struct RateControlMetrics rc;
604   int64_t cx_time = 0;
605   const int min_args_base = 13;
606 #if CONFIG_VP9_HIGHBITDEPTH
607   vpx_bit_depth_t bit_depth = VPX_BITS_8;
608   int input_bit_depth = 8;
609   const int min_args = min_args_base + 1;
610 #else
611   const int min_args = min_args_base;
612 #endif  // CONFIG_VP9_HIGHBITDEPTH
613   double sum_bitrate = 0.0;
614   double sum_bitrate2 = 0.0;
615   double framerate = 30.0;
616 
617   zero(rc.layer_target_bitrate);
618   memset(&layer_id, 0, sizeof(vpx_svc_layer_id_t));
619   memset(&input_ctx, 0, sizeof(input_ctx));
620   /* Setup default input stream settings */
621   input_ctx.framerate.numerator = 30;
622   input_ctx.framerate.denominator = 1;
623   input_ctx.only_i420 = 1;
624   input_ctx.bit_depth = 0;
625 
626   exec_name = argv[0];
627   // Check usage and arguments.
628   if (argc < min_args) {
629 #if CONFIG_VP9_HIGHBITDEPTH
630     die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> "
631         "<rate_num> <rate_den> <speed> <frame_drop_threshold> "
632         "<error_resilient> <threads> <mode> "
633         "<Rate_0> ... <Rate_nlayers-1> <bit-depth> \n",
634         argv[0]);
635 #else
636     die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> "
637         "<rate_num> <rate_den> <speed> <frame_drop_threshold> "
638         "<error_resilient> <threads> <mode> "
639         "<Rate_0> ... <Rate_nlayers-1> \n",
640         argv[0]);
641 #endif  // CONFIG_VP9_HIGHBITDEPTH
642   }
643 
644   encoder = get_vpx_encoder_by_name(argv[3]);
645   if (!encoder) die("Unsupported codec.");
646 
647   printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface()));
648 
649   width = (unsigned int)strtoul(argv[4], NULL, 0);
650   height = (unsigned int)strtoul(argv[5], NULL, 0);
651   if (width < 16 || width % 2 || height < 16 || height % 2) {
652     die("Invalid resolution: %d x %d", width, height);
653   }
654 
655   layering_mode = (int)strtol(argv[12], NULL, 0);
656   if (layering_mode < 0 || layering_mode > 13) {
657     die("Invalid layering mode (0..12) %s", argv[12]);
658   }
659 
660   if (argc != min_args + mode_to_num_layers[layering_mode]) {
661     die("Invalid number of arguments");
662   }
663 
664   input_ctx.filename = argv[1];
665   open_input_file(&input_ctx);
666 
667 #if CONFIG_VP9_HIGHBITDEPTH
668   switch (strtol(argv[argc - 1], NULL, 0)) {
669     case 8:
670       bit_depth = VPX_BITS_8;
671       input_bit_depth = 8;
672       break;
673     case 10:
674       bit_depth = VPX_BITS_10;
675       input_bit_depth = 10;
676       break;
677     case 12:
678       bit_depth = VPX_BITS_12;
679       input_bit_depth = 12;
680       break;
681     default: die("Invalid bit depth (8, 10, 12) %s", argv[argc - 1]);
682   }
683 
684   // Y4M reader has its own allocation.
685   if (input_ctx.file_type != FILE_TYPE_Y4M) {
686     if (!vpx_img_alloc(
687             &raw,
688             bit_depth == VPX_BITS_8 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_I42016,
689             width, height, 32)) {
690       die("Failed to allocate image", width, height);
691     }
692   }
693 #else
694   // Y4M reader has its own allocation.
695   if (input_ctx.file_type != FILE_TYPE_Y4M) {
696     if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, width, height, 32)) {
697       die("Failed to allocate image", width, height);
698     }
699   }
700 #endif  // CONFIG_VP9_HIGHBITDEPTH
701 
702   // Populate encoder configuration.
703   res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0);
704   if (res) {
705     printf("Failed to get config: %s\n", vpx_codec_err_to_string(res));
706     return EXIT_FAILURE;
707   }
708 
709   // Update the default configuration with our settings.
710   cfg.g_w = width;
711   cfg.g_h = height;
712 
713 #if CONFIG_VP9_HIGHBITDEPTH
714   if (bit_depth != VPX_BITS_8) {
715     cfg.g_bit_depth = bit_depth;
716     cfg.g_input_bit_depth = input_bit_depth;
717     cfg.g_profile = 2;
718   }
719 #endif  // CONFIG_VP9_HIGHBITDEPTH
720 
721   // Timebase format e.g. 30fps: numerator=1, demoninator = 30.
722   cfg.g_timebase.num = (int)strtol(argv[6], NULL, 0);
723   cfg.g_timebase.den = (int)strtol(argv[7], NULL, 0);
724 
725   speed = (int)strtol(argv[8], NULL, 0);
726   if (speed < 0) {
727     die("Invalid speed setting: must be positive");
728   }
729   if (strncmp(encoder->name, "vp9", 3) == 0 && speed > 9) {
730     warn("Mapping speed %d to speed 9.\n", speed);
731   }
732 
733   for (i = min_args_base;
734        (int)i < min_args_base + mode_to_num_layers[layering_mode]; ++i) {
735     rc.layer_target_bitrate[i - 13] = (int)strtol(argv[i], NULL, 0);
736     if (strncmp(encoder->name, "vp8", 3) == 0)
737       cfg.ts_target_bitrate[i - 13] = rc.layer_target_bitrate[i - 13];
738     else if (strncmp(encoder->name, "vp9", 3) == 0)
739       cfg.layer_target_bitrate[i - 13] = rc.layer_target_bitrate[i - 13];
740   }
741 
742   // Real time parameters.
743   cfg.rc_dropframe_thresh = (unsigned int)strtoul(argv[9], NULL, 0);
744   cfg.rc_end_usage = VPX_CBR;
745   cfg.rc_min_quantizer = 2;
746   cfg.rc_max_quantizer = 56;
747   if (strncmp(encoder->name, "vp9", 3) == 0) cfg.rc_max_quantizer = 52;
748   cfg.rc_undershoot_pct = 50;
749   cfg.rc_overshoot_pct = 50;
750   cfg.rc_buf_initial_sz = 600;
751   cfg.rc_buf_optimal_sz = 600;
752   cfg.rc_buf_sz = 1000;
753 
754   // Disable dynamic resizing by default.
755   cfg.rc_resize_allowed = 0;
756 
757   // Use 1 thread as default.
758   cfg.g_threads = (unsigned int)strtoul(argv[11], NULL, 0);
759 
760   error_resilient = (uint32_t)strtoul(argv[10], NULL, 0);
761   if (error_resilient != 0 && error_resilient != 1) {
762     die("Invalid value for error resilient (0, 1): %d.", error_resilient);
763   }
764   // Enable error resilient mode.
765   cfg.g_error_resilient = error_resilient;
766   cfg.g_lag_in_frames = 0;
767   cfg.kf_mode = VPX_KF_AUTO;
768 
769   // Disable automatic keyframe placement.
770   cfg.kf_min_dist = cfg.kf_max_dist = 3000;
771 
772   cfg.temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS;
773 
774   set_temporal_layer_pattern(layering_mode, &cfg, layer_flags,
775                              &flag_periodicity);
776 
777   set_rate_control_metrics(&rc, &cfg);
778 
779   if (input_ctx.file_type == FILE_TYPE_Y4M) {
780     if (input_ctx.width != cfg.g_w || input_ctx.height != cfg.g_h) {
781       die("Incorrect width or height: %d x %d", cfg.g_w, cfg.g_h);
782     }
783     if (input_ctx.framerate.numerator != cfg.g_timebase.den ||
784         input_ctx.framerate.denominator != cfg.g_timebase.num) {
785       die("Incorrect framerate: numerator %d denominator %d",
786           cfg.g_timebase.num, cfg.g_timebase.den);
787     }
788   }
789 
790   framerate = cfg.g_timebase.den / cfg.g_timebase.num;
791   // Open an output file for each stream.
792   for (i = 0; i < cfg.ts_number_layers; ++i) {
793     char file_name[PATH_MAX];
794     VpxVideoInfo info;
795     info.codec_fourcc = encoder->fourcc;
796     info.frame_width = cfg.g_w;
797     info.frame_height = cfg.g_h;
798     info.time_base.numerator = cfg.g_timebase.num;
799     info.time_base.denominator = cfg.g_timebase.den;
800 
801     snprintf(file_name, sizeof(file_name), "%s_%d.ivf", argv[2], i);
802     outfile[i] = vpx_video_writer_open(file_name, kContainerIVF, &info);
803     if (!outfile[i]) die("Failed to open %s for writing", file_name);
804 
805     assert(outfile[i] != NULL);
806   }
807   // No spatial layers in this encoder.
808   cfg.ss_number_layers = 1;
809 
810 // Initialize codec.
811 #if CONFIG_VP9_HIGHBITDEPTH
812   if (vpx_codec_enc_init(
813           &codec, encoder->codec_interface(), &cfg,
814           bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH))
815 #else
816   if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0))
817 #endif  // CONFIG_VP9_HIGHBITDEPTH
818     die_codec(&codec, "Failed to initialize encoder");
819 
820   if (strncmp(encoder->name, "vp8", 3) == 0) {
821     vpx_codec_control(&codec, VP8E_SET_CPUUSED, -speed);
822     vpx_codec_control(&codec, VP8E_SET_NOISE_SENSITIVITY, kVp8DenoiserOff);
823     vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1);
824     vpx_codec_control(&codec, VP8E_SET_GF_CBR_BOOST_PCT, 0);
825 #if ROI_MAP
826     set_roi_map(encoder->name, &cfg, &roi);
827     if (vpx_codec_control(&codec, VP8E_SET_ROI_MAP, &roi))
828       die_codec(&codec, "Failed to set ROI map");
829 #endif
830 
831   } else if (strncmp(encoder->name, "vp9", 3) == 0) {
832     vpx_svc_extra_cfg_t svc_params;
833     memset(&svc_params, 0, sizeof(svc_params));
834     vpx_codec_control(&codec, VP8E_SET_CPUUSED, speed);
835     vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3);
836     vpx_codec_control(&codec, VP9E_SET_GF_CBR_BOOST_PCT, 0);
837     vpx_codec_control(&codec, VP9E_SET_FRAME_PARALLEL_DECODING, 0);
838     vpx_codec_control(&codec, VP9E_SET_FRAME_PERIODIC_BOOST, 0);
839     vpx_codec_control(&codec, VP9E_SET_NOISE_SENSITIVITY, kVp9DenoiserOff);
840     vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1);
841     vpx_codec_control(&codec, VP9E_SET_TUNE_CONTENT, 0);
842     vpx_codec_control(&codec, VP9E_SET_TILE_COLUMNS, get_msb(cfg.g_threads));
843 #if ROI_MAP
844     set_roi_map(encoder->name, &cfg, &roi);
845     if (vpx_codec_control(&codec, VP9E_SET_ROI_MAP, &roi))
846       die_codec(&codec, "Failed to set ROI map");
847     vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 0);
848 #endif
849     if (cfg.g_threads > 1)
850       vpx_codec_control(&codec, VP9E_SET_ROW_MT, 1);
851     else
852       vpx_codec_control(&codec, VP9E_SET_ROW_MT, 0);
853     if (vpx_codec_control(&codec, VP9E_SET_SVC, layering_mode > 0 ? 1 : 0))
854       die_codec(&codec, "Failed to set SVC");
855     for (i = 0; i < cfg.ts_number_layers; ++i) {
856       svc_params.max_quantizers[i] = cfg.rc_max_quantizer;
857       svc_params.min_quantizers[i] = cfg.rc_min_quantizer;
858     }
859     svc_params.scaling_factor_num[0] = cfg.g_h;
860     svc_params.scaling_factor_den[0] = cfg.g_h;
861     vpx_codec_control(&codec, VP9E_SET_SVC_PARAMETERS, &svc_params);
862   }
863   if (strncmp(encoder->name, "vp8", 3) == 0) {
864     vpx_codec_control(&codec, VP8E_SET_SCREEN_CONTENT_MODE, 0);
865   }
866   vpx_codec_control(&codec, VP8E_SET_TOKEN_PARTITIONS, 1);
867   // This controls the maximum target size of the key frame.
868   // For generating smaller key frames, use a smaller max_intra_size_pct
869   // value, like 100 or 200.
870   {
871     const int max_intra_size_pct = 1000;
872     vpx_codec_control(&codec, VP8E_SET_MAX_INTRA_BITRATE_PCT,
873                       max_intra_size_pct);
874   }
875 
876   frame_avail = 1;
877   while (frame_avail || got_data) {
878     struct vpx_usec_timer timer;
879     vpx_codec_iter_t iter = NULL;
880     const vpx_codec_cx_pkt_t *pkt;
881     // Update the temporal layer_id. No spatial layers in this test.
882     layer_id.spatial_layer_id = 0;
883     layer_id.temporal_layer_id =
884         cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
885     layer_id.temporal_layer_id_per_spatial[0] = layer_id.temporal_layer_id;
886     if (strncmp(encoder->name, "vp9", 3) == 0) {
887       vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id);
888     } else if (strncmp(encoder->name, "vp8", 3) == 0) {
889       vpx_codec_control(&codec, VP8E_SET_TEMPORAL_LAYER_ID,
890                         layer_id.temporal_layer_id);
891     }
892     flags = layer_flags[frame_cnt % flag_periodicity];
893     if (layering_mode == 0) flags = 0;
894     frame_avail = read_frame(&input_ctx, &raw);
895     if (frame_avail) ++rc.layer_input_frames[layer_id.temporal_layer_id];
896     vpx_usec_timer_start(&timer);
897     if (vpx_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags,
898                          VPX_DL_REALTIME)) {
899       die_codec(&codec, "Failed to encode frame");
900     }
901     vpx_usec_timer_mark(&timer);
902     cx_time += vpx_usec_timer_elapsed(&timer);
903     // Reset KF flag.
904     if (layering_mode != 7) {
905       layer_flags[0] &= ~VPX_EFLAG_FORCE_KF;
906     }
907     got_data = 0;
908     while ((pkt = vpx_codec_get_cx_data(&codec, &iter))) {
909       got_data = 1;
910       switch (pkt->kind) {
911         case VPX_CODEC_CX_FRAME_PKT:
912           for (i = cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
913                i < cfg.ts_number_layers; ++i) {
914             vpx_video_writer_write_frame(outfile[i], pkt->data.frame.buf,
915                                          pkt->data.frame.sz, pts);
916             ++rc.layer_tot_enc_frames[i];
917             rc.layer_encoding_bitrate[i] += 8.0 * pkt->data.frame.sz;
918             // Keep count of rate control stats per layer (for non-key frames).
919             if (i == cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity] &&
920                 !(pkt->data.frame.flags & VPX_FRAME_IS_KEY)) {
921               rc.layer_avg_frame_size[i] += 8.0 * pkt->data.frame.sz;
922               rc.layer_avg_rate_mismatch[i] +=
923                   fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[i]) /
924                   rc.layer_pfb[i];
925               ++rc.layer_enc_frames[i];
926             }
927           }
928           // Update for short-time encoding bitrate states, for moving window
929           // of size rc->window, shifted by rc->window / 2.
930           // Ignore first window segment, due to key frame.
931           if (frame_cnt > rc.window_size) {
932             sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
933             if (frame_cnt % rc.window_size == 0) {
934               rc.window_count += 1;
935               rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
936               rc.variance_st_encoding_bitrate +=
937                   (sum_bitrate / rc.window_size) *
938                   (sum_bitrate / rc.window_size);
939               sum_bitrate = 0.0;
940             }
941           }
942           // Second shifted window.
943           if (frame_cnt > rc.window_size + rc.window_size / 2) {
944             sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
945             if (frame_cnt > 2 * rc.window_size &&
946                 frame_cnt % rc.window_size == 0) {
947               rc.window_count += 1;
948               rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
949               rc.variance_st_encoding_bitrate +=
950                   (sum_bitrate2 / rc.window_size) *
951                   (sum_bitrate2 / rc.window_size);
952               sum_bitrate2 = 0.0;
953             }
954           }
955           break;
956         default: break;
957       }
958     }
959     ++frame_cnt;
960     pts += frame_duration;
961   }
962   close_input_file(&input_ctx);
963   printout_rate_control_summary(&rc, &cfg, frame_cnt);
964   printf("\n");
965   printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
966          frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
967          1000000 * (double)frame_cnt / (double)cx_time);
968 
969   if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec");
970 
971   // Try to rewrite the output file headers with the actual frame count.
972   for (i = 0; i < cfg.ts_number_layers; ++i) vpx_video_writer_close(outfile[i]);
973 
974   if (input_ctx.file_type != FILE_TYPE_Y4M) {
975     vpx_img_free(&raw);
976   }
977 
978 #if ROI_MAP
979   free(roi.roi_map);
980 #endif
981   return EXIT_SUCCESS;
982 }
983