• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines several CodeGen-specific LLVM IR analysis utilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineModuleInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Target/TargetLowering.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetSubtargetInfo.h"
30 #include "llvm/Transforms/Utils/GlobalStatus.h"
31 
32 using namespace llvm;
33 
34 /// Compute the linearized index of a member in a nested aggregate/struct/array
35 /// by recursing and accumulating CurIndex as long as there are indices in the
36 /// index list.
ComputeLinearIndex(Type * Ty,const unsigned * Indices,const unsigned * IndicesEnd,unsigned CurIndex)37 unsigned llvm::ComputeLinearIndex(Type *Ty,
38                                   const unsigned *Indices,
39                                   const unsigned *IndicesEnd,
40                                   unsigned CurIndex) {
41   // Base case: We're done.
42   if (Indices && Indices == IndicesEnd)
43     return CurIndex;
44 
45   // Given a struct type, recursively traverse the elements.
46   if (StructType *STy = dyn_cast<StructType>(Ty)) {
47     for (StructType::element_iterator EB = STy->element_begin(),
48                                       EI = EB,
49                                       EE = STy->element_end();
50         EI != EE; ++EI) {
51       if (Indices && *Indices == unsigned(EI - EB))
52         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
53       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
54     }
55     assert(!Indices && "Unexpected out of bound");
56     return CurIndex;
57   }
58   // Given an array type, recursively traverse the elements.
59   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
60     Type *EltTy = ATy->getElementType();
61     unsigned NumElts = ATy->getNumElements();
62     // Compute the Linear offset when jumping one element of the array
63     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
64     if (Indices) {
65       assert(*Indices < NumElts && "Unexpected out of bound");
66       // If the indice is inside the array, compute the index to the requested
67       // elt and recurse inside the element with the end of the indices list
68       CurIndex += EltLinearOffset* *Indices;
69       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
70     }
71     CurIndex += EltLinearOffset*NumElts;
72     return CurIndex;
73   }
74   // We haven't found the type we're looking for, so keep searching.
75   return CurIndex + 1;
76 }
77 
78 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
79 /// EVTs that represent all the individual underlying
80 /// non-aggregate types that comprise it.
81 ///
82 /// If Offsets is non-null, it points to a vector to be filled in
83 /// with the in-memory offsets of each of the individual values.
84 ///
ComputeValueVTs(const TargetLowering & TLI,const DataLayout & DL,Type * Ty,SmallVectorImpl<EVT> & ValueVTs,SmallVectorImpl<uint64_t> * Offsets,uint64_t StartingOffset)85 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
86                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
87                            SmallVectorImpl<uint64_t> *Offsets,
88                            uint64_t StartingOffset) {
89   // Given a struct type, recursively traverse the elements.
90   if (StructType *STy = dyn_cast<StructType>(Ty)) {
91     const StructLayout *SL = DL.getStructLayout(STy);
92     for (StructType::element_iterator EB = STy->element_begin(),
93                                       EI = EB,
94                                       EE = STy->element_end();
95          EI != EE; ++EI)
96       ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
97                       StartingOffset + SL->getElementOffset(EI - EB));
98     return;
99   }
100   // Given an array type, recursively traverse the elements.
101   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
102     Type *EltTy = ATy->getElementType();
103     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
104     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
105       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
106                       StartingOffset + i * EltSize);
107     return;
108   }
109   // Interpret void as zero return values.
110   if (Ty->isVoidTy())
111     return;
112   // Base case: we can get an EVT for this LLVM IR type.
113   ValueVTs.push_back(TLI.getValueType(DL, Ty));
114   if (Offsets)
115     Offsets->push_back(StartingOffset);
116 }
117 
118 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
ExtractTypeInfo(Value * V)119 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
120   V = V->stripPointerCasts();
121   GlobalValue *GV = dyn_cast<GlobalValue>(V);
122   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
123 
124   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
125     assert(Var->hasInitializer() &&
126            "The EH catch-all value must have an initializer");
127     Value *Init = Var->getInitializer();
128     GV = dyn_cast<GlobalValue>(Init);
129     if (!GV) V = cast<ConstantPointerNull>(Init);
130   }
131 
132   assert((GV || isa<ConstantPointerNull>(V)) &&
133          "TypeInfo must be a global variable or NULL");
134   return GV;
135 }
136 
137 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
138 /// processed uses a memory 'm' constraint.
139 bool
hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector & CInfos,const TargetLowering & TLI)140 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
141                                 const TargetLowering &TLI) {
142   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
143     InlineAsm::ConstraintInfo &CI = CInfos[i];
144     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
145       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
146       if (CType == TargetLowering::C_Memory)
147         return true;
148     }
149 
150     // Indirect operand accesses access memory.
151     if (CI.isIndirect)
152       return true;
153   }
154 
155   return false;
156 }
157 
158 /// getFCmpCondCode - Return the ISD condition code corresponding to
159 /// the given LLVM IR floating-point condition code.  This includes
160 /// consideration of global floating-point math flags.
161 ///
getFCmpCondCode(FCmpInst::Predicate Pred)162 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
163   switch (Pred) {
164   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
165   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
166   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
167   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
168   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
169   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
170   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
171   case FCmpInst::FCMP_ORD:   return ISD::SETO;
172   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
173   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
174   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
175   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
176   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
177   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
178   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
179   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
180   default: llvm_unreachable("Invalid FCmp predicate opcode!");
181   }
182 }
183 
getFCmpCodeWithoutNaN(ISD::CondCode CC)184 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
185   switch (CC) {
186     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
187     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
188     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
189     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
190     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
191     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
192     default: return CC;
193   }
194 }
195 
196 /// getICmpCondCode - Return the ISD condition code corresponding to
197 /// the given LLVM IR integer condition code.
198 ///
getICmpCondCode(ICmpInst::Predicate Pred)199 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
200   switch (Pred) {
201   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
202   case ICmpInst::ICMP_NE:  return ISD::SETNE;
203   case ICmpInst::ICMP_SLE: return ISD::SETLE;
204   case ICmpInst::ICMP_ULE: return ISD::SETULE;
205   case ICmpInst::ICMP_SGE: return ISD::SETGE;
206   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
207   case ICmpInst::ICMP_SLT: return ISD::SETLT;
208   case ICmpInst::ICMP_ULT: return ISD::SETULT;
209   case ICmpInst::ICMP_SGT: return ISD::SETGT;
210   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
211   default:
212     llvm_unreachable("Invalid ICmp predicate opcode!");
213   }
214 }
215 
isNoopBitcast(Type * T1,Type * T2,const TargetLoweringBase & TLI)216 static bool isNoopBitcast(Type *T1, Type *T2,
217                           const TargetLoweringBase& TLI) {
218   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
219          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
220           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
221 }
222 
223 /// Look through operations that will be free to find the earliest source of
224 /// this value.
225 ///
226 /// @param ValLoc If V has aggegate type, we will be interested in a particular
227 /// scalar component. This records its address; the reverse of this list gives a
228 /// sequence of indices appropriate for an extractvalue to locate the important
229 /// value. This value is updated during the function and on exit will indicate
230 /// similar information for the Value returned.
231 ///
232 /// @param DataBits If this function looks through truncate instructions, this
233 /// will record the smallest size attained.
getNoopInput(const Value * V,SmallVectorImpl<unsigned> & ValLoc,unsigned & DataBits,const TargetLoweringBase & TLI,const DataLayout & DL)234 static const Value *getNoopInput(const Value *V,
235                                  SmallVectorImpl<unsigned> &ValLoc,
236                                  unsigned &DataBits,
237                                  const TargetLoweringBase &TLI,
238                                  const DataLayout &DL) {
239   while (true) {
240     // Try to look through V1; if V1 is not an instruction, it can't be looked
241     // through.
242     const Instruction *I = dyn_cast<Instruction>(V);
243     if (!I || I->getNumOperands() == 0) return V;
244     const Value *NoopInput = nullptr;
245 
246     Value *Op = I->getOperand(0);
247     if (isa<BitCastInst>(I)) {
248       // Look through truly no-op bitcasts.
249       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
250         NoopInput = Op;
251     } else if (isa<GetElementPtrInst>(I)) {
252       // Look through getelementptr
253       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
254         NoopInput = Op;
255     } else if (isa<IntToPtrInst>(I)) {
256       // Look through inttoptr.
257       // Make sure this isn't a truncating or extending cast.  We could
258       // support this eventually, but don't bother for now.
259       if (!isa<VectorType>(I->getType()) &&
260           DL.getPointerSizeInBits() ==
261               cast<IntegerType>(Op->getType())->getBitWidth())
262         NoopInput = Op;
263     } else if (isa<PtrToIntInst>(I)) {
264       // Look through ptrtoint.
265       // Make sure this isn't a truncating or extending cast.  We could
266       // support this eventually, but don't bother for now.
267       if (!isa<VectorType>(I->getType()) &&
268           DL.getPointerSizeInBits() ==
269               cast<IntegerType>(I->getType())->getBitWidth())
270         NoopInput = Op;
271     } else if (isa<TruncInst>(I) &&
272                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
273       DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
274       NoopInput = Op;
275     } else if (isa<CallInst>(I)) {
276       // Look through call (skipping callee)
277       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
278            i != e; ++i) {
279         unsigned attrInd = i - I->op_begin() + 1;
280         if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
281             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
282           NoopInput = *i;
283           break;
284         }
285       }
286     } else if (isa<InvokeInst>(I)) {
287       // Look through invoke (skipping BB, BB, Callee)
288       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
289            i != e; ++i) {
290         unsigned attrInd = i - I->op_begin() + 1;
291         if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
292             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
293           NoopInput = *i;
294           break;
295         }
296       }
297     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
298       // Value may come from either the aggregate or the scalar
299       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
300       if (ValLoc.size() >= InsertLoc.size() &&
301           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
302         // The type being inserted is a nested sub-type of the aggregate; we
303         // have to remove those initial indices to get the location we're
304         // interested in for the operand.
305         ValLoc.resize(ValLoc.size() - InsertLoc.size());
306         NoopInput = IVI->getInsertedValueOperand();
307       } else {
308         // The struct we're inserting into has the value we're interested in, no
309         // change of address.
310         NoopInput = Op;
311       }
312     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
313       // The part we're interested in will inevitably be some sub-section of the
314       // previous aggregate. Combine the two paths to obtain the true address of
315       // our element.
316       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
317       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
318       NoopInput = Op;
319     }
320     // Terminate if we couldn't find anything to look through.
321     if (!NoopInput)
322       return V;
323 
324     V = NoopInput;
325   }
326 }
327 
328 /// Return true if this scalar return value only has bits discarded on its path
329 /// from the "tail call" to the "ret". This includes the obvious noop
330 /// instructions handled by getNoopInput above as well as free truncations (or
331 /// extensions prior to the call).
slotOnlyDiscardsData(const Value * RetVal,const Value * CallVal,SmallVectorImpl<unsigned> & RetIndices,SmallVectorImpl<unsigned> & CallIndices,bool AllowDifferingSizes,const TargetLoweringBase & TLI,const DataLayout & DL)332 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
333                                  SmallVectorImpl<unsigned> &RetIndices,
334                                  SmallVectorImpl<unsigned> &CallIndices,
335                                  bool AllowDifferingSizes,
336                                  const TargetLoweringBase &TLI,
337                                  const DataLayout &DL) {
338 
339   // Trace the sub-value needed by the return value as far back up the graph as
340   // possible, in the hope that it will intersect with the value produced by the
341   // call. In the simple case with no "returned" attribute, the hope is actually
342   // that we end up back at the tail call instruction itself.
343   unsigned BitsRequired = UINT_MAX;
344   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
345 
346   // If this slot in the value returned is undef, it doesn't matter what the
347   // call puts there, it'll be fine.
348   if (isa<UndefValue>(RetVal))
349     return true;
350 
351   // Now do a similar search up through the graph to find where the value
352   // actually returned by the "tail call" comes from. In the simple case without
353   // a "returned" attribute, the search will be blocked immediately and the loop
354   // a Noop.
355   unsigned BitsProvided = UINT_MAX;
356   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
357 
358   // There's no hope if we can't actually trace them to (the same part of!) the
359   // same value.
360   if (CallVal != RetVal || CallIndices != RetIndices)
361     return false;
362 
363   // However, intervening truncates may have made the call non-tail. Make sure
364   // all the bits that are needed by the "ret" have been provided by the "tail
365   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
366   // extensions too.
367   if (BitsProvided < BitsRequired ||
368       (!AllowDifferingSizes && BitsProvided != BitsRequired))
369     return false;
370 
371   return true;
372 }
373 
374 /// For an aggregate type, determine whether a given index is within bounds or
375 /// not.
indexReallyValid(CompositeType * T,unsigned Idx)376 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
377   if (ArrayType *AT = dyn_cast<ArrayType>(T))
378     return Idx < AT->getNumElements();
379 
380   return Idx < cast<StructType>(T)->getNumElements();
381 }
382 
383 /// Move the given iterators to the next leaf type in depth first traversal.
384 ///
385 /// Performs a depth-first traversal of the type as specified by its arguments,
386 /// stopping at the next leaf node (which may be a legitimate scalar type or an
387 /// empty struct or array).
388 ///
389 /// @param SubTypes List of the partial components making up the type from
390 /// outermost to innermost non-empty aggregate. The element currently
391 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
392 ///
393 /// @param Path Set of extractvalue indices leading from the outermost type
394 /// (SubTypes[0]) to the leaf node currently represented.
395 ///
396 /// @returns true if a new type was found, false otherwise. Calling this
397 /// function again on a finished iterator will repeatedly return
398 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
399 /// aggregate or a non-aggregate
advanceToNextLeafType(SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)400 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
401                                   SmallVectorImpl<unsigned> &Path) {
402   // First march back up the tree until we can successfully increment one of the
403   // coordinates in Path.
404   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
405     Path.pop_back();
406     SubTypes.pop_back();
407   }
408 
409   // If we reached the top, then the iterator is done.
410   if (Path.empty())
411     return false;
412 
413   // We know there's *some* valid leaf now, so march back down the tree picking
414   // out the left-most element at each node.
415   ++Path.back();
416   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
417   while (DeeperType->isAggregateType()) {
418     CompositeType *CT = cast<CompositeType>(DeeperType);
419     if (!indexReallyValid(CT, 0))
420       return true;
421 
422     SubTypes.push_back(CT);
423     Path.push_back(0);
424 
425     DeeperType = CT->getTypeAtIndex(0U);
426   }
427 
428   return true;
429 }
430 
431 /// Find the first non-empty, scalar-like type in Next and setup the iterator
432 /// components.
433 ///
434 /// Assuming Next is an aggregate of some kind, this function will traverse the
435 /// tree from left to right (i.e. depth-first) looking for the first
436 /// non-aggregate type which will play a role in function return.
437 ///
438 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
439 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
440 /// i32 in that type.
firstRealType(Type * Next,SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)441 static bool firstRealType(Type *Next,
442                           SmallVectorImpl<CompositeType *> &SubTypes,
443                           SmallVectorImpl<unsigned> &Path) {
444   // First initialise the iterator components to the first "leaf" node
445   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
446   // despite nominally being an aggregate).
447   while (Next->isAggregateType() &&
448          indexReallyValid(cast<CompositeType>(Next), 0)) {
449     SubTypes.push_back(cast<CompositeType>(Next));
450     Path.push_back(0);
451     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
452   }
453 
454   // If there's no Path now, Next was originally scalar already (or empty
455   // leaf). We're done.
456   if (Path.empty())
457     return true;
458 
459   // Otherwise, use normal iteration to keep looking through the tree until we
460   // find a non-aggregate type.
461   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
462     if (!advanceToNextLeafType(SubTypes, Path))
463       return false;
464   }
465 
466   return true;
467 }
468 
469 /// Set the iterator data-structures to the next non-empty, non-aggregate
470 /// subtype.
nextRealType(SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)471 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
472                          SmallVectorImpl<unsigned> &Path) {
473   do {
474     if (!advanceToNextLeafType(SubTypes, Path))
475       return false;
476 
477     assert(!Path.empty() && "found a leaf but didn't set the path?");
478   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
479 
480   return true;
481 }
482 
483 
484 /// Test if the given instruction is in a position to be optimized
485 /// with a tail-call. This roughly means that it's in a block with
486 /// a return and there's nothing that needs to be scheduled
487 /// between it and the return.
488 ///
489 /// This function only tests target-independent requirements.
isInTailCallPosition(ImmutableCallSite CS,const TargetMachine & TM)490 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
491   const Instruction *I = CS.getInstruction();
492   const BasicBlock *ExitBB = I->getParent();
493   const TerminatorInst *Term = ExitBB->getTerminator();
494   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
495 
496   // The block must end in a return statement or unreachable.
497   //
498   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
499   // an unreachable, for now. The way tailcall optimization is currently
500   // implemented means it will add an epilogue followed by a jump. That is
501   // not profitable. Also, if the callee is a special function (e.g.
502   // longjmp on x86), it can end up causing miscompilation that has not
503   // been fully understood.
504   if (!Ret &&
505       (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
506     return false;
507 
508   // If I will have a chain, make sure no other instruction that will have a
509   // chain interposes between I and the return.
510   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
511       !isSafeToSpeculativelyExecute(I))
512     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
513       if (&*BBI == I)
514         break;
515       // Debug info intrinsics do not get in the way of tail call optimization.
516       if (isa<DbgInfoIntrinsic>(BBI))
517         continue;
518       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
519           !isSafeToSpeculativelyExecute(&*BBI))
520         return false;
521     }
522 
523   const Function *F = ExitBB->getParent();
524   return returnTypeIsEligibleForTailCall(
525       F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
526 }
527 
returnTypeIsEligibleForTailCall(const Function * F,const Instruction * I,const ReturnInst * Ret,const TargetLoweringBase & TLI)528 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
529                                            const Instruction *I,
530                                            const ReturnInst *Ret,
531                                            const TargetLoweringBase &TLI) {
532   // If the block ends with a void return or unreachable, it doesn't matter
533   // what the call's return type is.
534   if (!Ret || Ret->getNumOperands() == 0) return true;
535 
536   // If the return value is undef, it doesn't matter what the call's
537   // return type is.
538   if (isa<UndefValue>(Ret->getOperand(0))) return true;
539 
540   // Make sure the attributes attached to each return are compatible.
541   AttrBuilder CallerAttrs(F->getAttributes(),
542                           AttributeSet::ReturnIndex);
543   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
544                           AttributeSet::ReturnIndex);
545 
546   // Noalias is completely benign as far as calling convention goes, it
547   // shouldn't affect whether the call is a tail call.
548   CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
549   CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
550 
551   bool AllowDifferingSizes = true;
552   if (CallerAttrs.contains(Attribute::ZExt)) {
553     if (!CalleeAttrs.contains(Attribute::ZExt))
554       return false;
555 
556     AllowDifferingSizes = false;
557     CallerAttrs.removeAttribute(Attribute::ZExt);
558     CalleeAttrs.removeAttribute(Attribute::ZExt);
559   } else if (CallerAttrs.contains(Attribute::SExt)) {
560     if (!CalleeAttrs.contains(Attribute::SExt))
561       return false;
562 
563     AllowDifferingSizes = false;
564     CallerAttrs.removeAttribute(Attribute::SExt);
565     CalleeAttrs.removeAttribute(Attribute::SExt);
566   }
567 
568   // If they're still different, there's some facet we don't understand
569   // (currently only "inreg", but in future who knows). It may be OK but the
570   // only safe option is to reject the tail call.
571   if (CallerAttrs != CalleeAttrs)
572     return false;
573 
574   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
575   SmallVector<unsigned, 4> RetPath, CallPath;
576   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
577 
578   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
579   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
580 
581   // Nothing's actually returned, it doesn't matter what the callee put there
582   // it's a valid tail call.
583   if (RetEmpty)
584     return true;
585 
586   // Iterate pairwise through each of the value types making up the tail call
587   // and the corresponding return. For each one we want to know whether it's
588   // essentially going directly from the tail call to the ret, via operations
589   // that end up not generating any code.
590   //
591   // We allow a certain amount of covariance here. For example it's permitted
592   // for the tail call to define more bits than the ret actually cares about
593   // (e.g. via a truncate).
594   do {
595     if (CallEmpty) {
596       // We've exhausted the values produced by the tail call instruction, the
597       // rest are essentially undef. The type doesn't really matter, but we need
598       // *something*.
599       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
600       CallVal = UndefValue::get(SlotType);
601     }
602 
603     // The manipulations performed when we're looking through an insertvalue or
604     // an extractvalue would happen at the front of the RetPath list, so since
605     // we have to copy it anyway it's more efficient to create a reversed copy.
606     SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
607     SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
608 
609     // Finally, we can check whether the value produced by the tail call at this
610     // index is compatible with the value we return.
611     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
612                               AllowDifferingSizes, TLI,
613                               F->getParent()->getDataLayout()))
614       return false;
615 
616     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
617   } while(nextRealType(RetSubTypes, RetPath));
618 
619   return true;
620 }
621 
canBeOmittedFromSymbolTable(const GlobalValue * GV)622 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
623   if (!GV->hasLinkOnceODRLinkage())
624     return false;
625 
626   // We assume that anyone who sets global unnamed_addr on a non-constant knows
627   // what they're doing.
628   if (GV->hasGlobalUnnamedAddr())
629     return true;
630 
631   // If it is a non constant variable, it needs to be uniqued across shared
632   // objects.
633   if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
634     if (!Var->isConstant())
635       return false;
636   }
637 
638   return GV->hasAtLeastLocalUnnamedAddr();
639 }
640 
collectFuncletMembers(DenseMap<const MachineBasicBlock *,int> & FuncletMembership,int Funclet,const MachineBasicBlock * MBB)641 static void collectFuncletMembers(
642     DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet,
643     const MachineBasicBlock *MBB) {
644   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
645   while (!Worklist.empty()) {
646     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
647     // Don't follow blocks which start new funclets.
648     if (Visiting->isEHPad() && Visiting != MBB)
649       continue;
650 
651     // Add this MBB to our funclet.
652     auto P = FuncletMembership.insert(std::make_pair(Visiting, Funclet));
653 
654     // Don't revisit blocks.
655     if (!P.second) {
656       assert(P.first->second == Funclet && "MBB is part of two funclets!");
657       continue;
658     }
659 
660     // Returns are boundaries where funclet transfer can occur, don't follow
661     // successors.
662     if (Visiting->isReturnBlock())
663       continue;
664 
665     for (const MachineBasicBlock *Succ : Visiting->successors())
666       Worklist.push_back(Succ);
667   }
668 }
669 
670 DenseMap<const MachineBasicBlock *, int>
getFuncletMembership(const MachineFunction & MF)671 llvm::getFuncletMembership(const MachineFunction &MF) {
672   DenseMap<const MachineBasicBlock *, int> FuncletMembership;
673 
674   // We don't have anything to do if there aren't any EH pads.
675   if (!MF.getMMI().hasEHFunclets())
676     return FuncletMembership;
677 
678   int EntryBBNumber = MF.front().getNumber();
679   bool IsSEH = isAsynchronousEHPersonality(
680       classifyEHPersonality(MF.getFunction()->getPersonalityFn()));
681 
682   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
683   SmallVector<const MachineBasicBlock *, 16> FuncletBlocks;
684   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
685   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
686   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
687   for (const MachineBasicBlock &MBB : MF) {
688     if (MBB.isEHFuncletEntry()) {
689       FuncletBlocks.push_back(&MBB);
690     } else if (IsSEH && MBB.isEHPad()) {
691       SEHCatchPads.push_back(&MBB);
692     } else if (MBB.pred_empty()) {
693       UnreachableBlocks.push_back(&MBB);
694     }
695 
696     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
697     // CatchPads are not funclets for SEH so do not consider CatchRet to
698     // transfer control to another funclet.
699     if (MBBI->getOpcode() != TII->getCatchReturnOpcode())
700       continue;
701 
702     // FIXME: SEH CatchPads are not necessarily in the parent function:
703     // they could be inside a finally block.
704     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
705     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
706     CatchRetSuccessors.push_back(
707         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
708   }
709 
710   // We don't have anything to do if there aren't any EH pads.
711   if (FuncletBlocks.empty())
712     return FuncletMembership;
713 
714   // Identify all the basic blocks reachable from the function entry.
715   collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front());
716   // All blocks not part of a funclet are in the parent function.
717   for (const MachineBasicBlock *MBB : UnreachableBlocks)
718     collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB);
719   // Next, identify all the blocks inside the funclets.
720   for (const MachineBasicBlock *MBB : FuncletBlocks)
721     collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB);
722   // SEH CatchPads aren't really funclets, handle them separately.
723   for (const MachineBasicBlock *MBB : SEHCatchPads)
724     collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB);
725   // Finally, identify all the targets of a catchret.
726   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
727        CatchRetSuccessors)
728     collectFuncletMembers(FuncletMembership, CatchRetPair.second,
729                           CatchRetPair.first);
730   return FuncletMembership;
731 }
732