• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
2  //
3  //                     The LLVM Compiler Infrastructure
4  //
5  // This file is distributed under the University of Illinois Open Source
6  // License. See LICENSE.TXT for details.
7  //
8  //===----------------------------------------------------------------------===//
9  //
10  // This file implements the LatencyPriorityQueue class, which is a
11  // SchedulingPriorityQueue that schedules using latency information to
12  // reduce the length of the critical path through the basic block.
13  //
14  //===----------------------------------------------------------------------===//
15  
16  #include "llvm/CodeGen/LatencyPriorityQueue.h"
17  #include "llvm/Support/Debug.h"
18  #include "llvm/Support/raw_ostream.h"
19  using namespace llvm;
20  
21  #define DEBUG_TYPE "scheduler"
22  
operator ()(const SUnit * LHS,const SUnit * RHS) const23  bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
24    // The isScheduleHigh flag allows nodes with wraparound dependencies that
25    // cannot easily be modeled as edges with latencies to be scheduled as
26    // soon as possible in a top-down schedule.
27    if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
28      return false;
29    if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
30      return true;
31  
32    unsigned LHSNum = LHS->NodeNum;
33    unsigned RHSNum = RHS->NodeNum;
34  
35    // The most important heuristic is scheduling the critical path.
36    unsigned LHSLatency = PQ->getLatency(LHSNum);
37    unsigned RHSLatency = PQ->getLatency(RHSNum);
38    if (LHSLatency < RHSLatency) return true;
39    if (LHSLatency > RHSLatency) return false;
40  
41    // After that, if two nodes have identical latencies, look to see if one will
42    // unblock more other nodes than the other.
43    unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
44    unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
45    if (LHSBlocked < RHSBlocked) return true;
46    if (LHSBlocked > RHSBlocked) return false;
47  
48    // Finally, just to provide a stable ordering, use the node number as a
49    // deciding factor.
50    return RHSNum < LHSNum;
51  }
52  
53  
54  /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
55  /// of SU, return it, otherwise return null.
getSingleUnscheduledPred(SUnit * SU)56  SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
57    SUnit *OnlyAvailablePred = nullptr;
58    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
59         I != E; ++I) {
60      SUnit &Pred = *I->getSUnit();
61      if (!Pred.isScheduled) {
62        // We found an available, but not scheduled, predecessor.  If it's the
63        // only one we have found, keep track of it... otherwise give up.
64        if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
65          return nullptr;
66        OnlyAvailablePred = &Pred;
67      }
68    }
69  
70    return OnlyAvailablePred;
71  }
72  
push(SUnit * SU)73  void LatencyPriorityQueue::push(SUnit *SU) {
74    // Look at all of the successors of this node.  Count the number of nodes that
75    // this node is the sole unscheduled node for.
76    unsigned NumNodesBlocking = 0;
77    for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
78         I != E; ++I) {
79      if (getSingleUnscheduledPred(I->getSUnit()) == SU)
80        ++NumNodesBlocking;
81    }
82    NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
83  
84    Queue.push_back(SU);
85  }
86  
87  
88  // scheduledNode - As nodes are scheduled, we look to see if there are any
89  // successor nodes that have a single unscheduled predecessor.  If so, that
90  // single predecessor has a higher priority, since scheduling it will make
91  // the node available.
scheduledNode(SUnit * SU)92  void LatencyPriorityQueue::scheduledNode(SUnit *SU) {
93    for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
94         I != E; ++I) {
95      AdjustPriorityOfUnscheduledPreds(I->getSUnit());
96    }
97  }
98  
99  /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
100  /// scheduled.  If SU is not itself available, then there is at least one
101  /// predecessor node that has not been scheduled yet.  If SU has exactly ONE
102  /// unscheduled predecessor, we want to increase its priority: it getting
103  /// scheduled will make this node available, so it is better than some other
104  /// node of the same priority that will not make a node available.
AdjustPriorityOfUnscheduledPreds(SUnit * SU)105  void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
106    if (SU->isAvailable) return;  // All preds scheduled.
107  
108    SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
109    if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return;
110  
111    // Okay, we found a single predecessor that is available, but not scheduled.
112    // Since it is available, it must be in the priority queue.  First remove it.
113    remove(OnlyAvailablePred);
114  
115    // Reinsert the node into the priority queue, which recomputes its
116    // NumNodesSolelyBlocking value.
117    push(OnlyAvailablePred);
118  }
119  
pop()120  SUnit *LatencyPriorityQueue::pop() {
121    if (empty()) return nullptr;
122    std::vector<SUnit *>::iterator Best = Queue.begin();
123    for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()),
124         E = Queue.end(); I != E; ++I)
125      if (Picker(*Best, *I))
126        Best = I;
127    SUnit *V = *Best;
128    if (Best != std::prev(Queue.end()))
129      std::swap(*Best, Queue.back());
130    Queue.pop_back();
131    return V;
132  }
133  
remove(SUnit * SU)134  void LatencyPriorityQueue::remove(SUnit *SU) {
135    assert(!Queue.empty() && "Queue is empty!");
136    std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU);
137    if (I != std::prev(Queue.end()))
138      std::swap(*I, Queue.back());
139    Queue.pop_back();
140  }
141