• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MachineSSAUpdater class. It's based on SSAUpdater
11 // class in lib/Transforms/Utils.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineSSAUpdater.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Support/AlignOf.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Target/TargetRegisterInfo.h"
27 #include "llvm/Target/TargetSubtargetInfo.h"
28 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "machine-ssaupdater"
32 
33 typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
getAvailableVals(void * AV)34 static AvailableValsTy &getAvailableVals(void *AV) {
35   return *static_cast<AvailableValsTy*>(AV);
36 }
37 
MachineSSAUpdater(MachineFunction & MF,SmallVectorImpl<MachineInstr * > * NewPHI)38 MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
39                                      SmallVectorImpl<MachineInstr*> *NewPHI)
40   : AV(nullptr), InsertedPHIs(NewPHI) {
41   TII = MF.getSubtarget().getInstrInfo();
42   MRI = &MF.getRegInfo();
43 }
44 
~MachineSSAUpdater()45 MachineSSAUpdater::~MachineSSAUpdater() {
46   delete static_cast<AvailableValsTy*>(AV);
47 }
48 
49 /// Initialize - Reset this object to get ready for a new set of SSA
50 /// updates.  ProtoValue is the value used to name PHI nodes.
Initialize(unsigned V)51 void MachineSSAUpdater::Initialize(unsigned V) {
52   if (!AV)
53     AV = new AvailableValsTy();
54   else
55     getAvailableVals(AV).clear();
56 
57   VR = V;
58   VRC = MRI->getRegClass(VR);
59 }
60 
61 /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
62 /// the specified block.
HasValueForBlock(MachineBasicBlock * BB) const63 bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
64   return getAvailableVals(AV).count(BB);
65 }
66 
67 /// AddAvailableValue - Indicate that a rewritten value is available in the
68 /// specified block with the specified value.
AddAvailableValue(MachineBasicBlock * BB,unsigned V)69 void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
70   getAvailableVals(AV)[BB] = V;
71 }
72 
73 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
74 /// live at the end of the specified block.
GetValueAtEndOfBlock(MachineBasicBlock * BB)75 unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
76   return GetValueAtEndOfBlockInternal(BB);
77 }
78 
79 static
LookForIdenticalPHI(MachineBasicBlock * BB,SmallVectorImpl<std::pair<MachineBasicBlock *,unsigned>> & PredValues)80 unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
81         SmallVectorImpl<std::pair<MachineBasicBlock*, unsigned> > &PredValues) {
82   if (BB->empty())
83     return 0;
84 
85   MachineBasicBlock::iterator I = BB->begin();
86   if (!I->isPHI())
87     return 0;
88 
89   AvailableValsTy AVals;
90   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
91     AVals[PredValues[i].first] = PredValues[i].second;
92   while (I != BB->end() && I->isPHI()) {
93     bool Same = true;
94     for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
95       unsigned SrcReg = I->getOperand(i).getReg();
96       MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
97       if (AVals[SrcBB] != SrcReg) {
98         Same = false;
99         break;
100       }
101     }
102     if (Same)
103       return I->getOperand(0).getReg();
104     ++I;
105   }
106   return 0;
107 }
108 
109 /// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
110 /// a value of the given register class at the start of the specified basic
111 /// block. It returns the virtual register defined by the instruction.
112 static
InsertNewDef(unsigned Opcode,MachineBasicBlock * BB,MachineBasicBlock::iterator I,const TargetRegisterClass * RC,MachineRegisterInfo * MRI,const TargetInstrInfo * TII)113 MachineInstrBuilder InsertNewDef(unsigned Opcode,
114                            MachineBasicBlock *BB, MachineBasicBlock::iterator I,
115                            const TargetRegisterClass *RC,
116                            MachineRegisterInfo *MRI,
117                            const TargetInstrInfo *TII) {
118   unsigned NewVR = MRI->createVirtualRegister(RC);
119   return BuildMI(*BB, I, DebugLoc(), TII->get(Opcode), NewVR);
120 }
121 
122 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
123 /// is live in the middle of the specified block.
124 ///
125 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
126 /// important case: if there is a definition of the rewritten value after the
127 /// 'use' in BB.  Consider code like this:
128 ///
129 ///      X1 = ...
130 ///   SomeBB:
131 ///      use(X)
132 ///      X2 = ...
133 ///      br Cond, SomeBB, OutBB
134 ///
135 /// In this case, there are two values (X1 and X2) added to the AvailableVals
136 /// set by the client of the rewriter, and those values are both live out of
137 /// their respective blocks.  However, the use of X happens in the *middle* of
138 /// a block.  Because of this, we need to insert a new PHI node in SomeBB to
139 /// merge the appropriate values, and this value isn't live out of the block.
140 ///
GetValueInMiddleOfBlock(MachineBasicBlock * BB)141 unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
142   // If there is no definition of the renamed variable in this block, just use
143   // GetValueAtEndOfBlock to do our work.
144   if (!HasValueForBlock(BB))
145     return GetValueAtEndOfBlockInternal(BB);
146 
147   // If there are no predecessors, just return undef.
148   if (BB->pred_empty()) {
149     // Insert an implicit_def to represent an undef value.
150     MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
151                                         BB, BB->getFirstTerminator(),
152                                         VRC, MRI, TII);
153     return NewDef->getOperand(0).getReg();
154   }
155 
156   // Otherwise, we have the hard case.  Get the live-in values for each
157   // predecessor.
158   SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
159   unsigned SingularValue = 0;
160 
161   bool isFirstPred = true;
162   for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
163          E = BB->pred_end(); PI != E; ++PI) {
164     MachineBasicBlock *PredBB = *PI;
165     unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
166     PredValues.push_back(std::make_pair(PredBB, PredVal));
167 
168     // Compute SingularValue.
169     if (isFirstPred) {
170       SingularValue = PredVal;
171       isFirstPred = false;
172     } else if (PredVal != SingularValue)
173       SingularValue = 0;
174   }
175 
176   // Otherwise, if all the merged values are the same, just use it.
177   if (SingularValue != 0)
178     return SingularValue;
179 
180   // If an identical PHI is already in BB, just reuse it.
181   unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
182   if (DupPHI)
183     return DupPHI;
184 
185   // Otherwise, we do need a PHI: insert one now.
186   MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->begin();
187   MachineInstrBuilder InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB,
188                                                  Loc, VRC, MRI, TII);
189 
190   // Fill in all the predecessors of the PHI.
191   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
192     InsertedPHI.addReg(PredValues[i].second).addMBB(PredValues[i].first);
193 
194   // See if the PHI node can be merged to a single value.  This can happen in
195   // loop cases when we get a PHI of itself and one other value.
196   if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
197     InsertedPHI->eraseFromParent();
198     return ConstVal;
199   }
200 
201   // If the client wants to know about all new instructions, tell it.
202   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
203 
204   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
205   return InsertedPHI->getOperand(0).getReg();
206 }
207 
208 static
findCorrespondingPred(const MachineInstr * MI,MachineOperand * U)209 MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
210                                          MachineOperand *U) {
211   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
212     if (&MI->getOperand(i) == U)
213       return MI->getOperand(i+1).getMBB();
214   }
215 
216   llvm_unreachable("MachineOperand::getParent() failure?");
217 }
218 
219 /// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
220 /// which use their value in the corresponding predecessor.
RewriteUse(MachineOperand & U)221 void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
222   MachineInstr *UseMI = U.getParent();
223   unsigned NewVR = 0;
224   if (UseMI->isPHI()) {
225     MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
226     NewVR = GetValueAtEndOfBlockInternal(SourceBB);
227   } else {
228     NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
229   }
230 
231   U.setReg(NewVR);
232 }
233 
234 /// SSAUpdaterTraits<MachineSSAUpdater> - Traits for the SSAUpdaterImpl
235 /// template, specialized for MachineSSAUpdater.
236 namespace llvm {
237 template<>
238 class SSAUpdaterTraits<MachineSSAUpdater> {
239 public:
240   typedef MachineBasicBlock BlkT;
241   typedef unsigned ValT;
242   typedef MachineInstr PhiT;
243 
244   typedef MachineBasicBlock::succ_iterator BlkSucc_iterator;
BlkSucc_begin(BlkT * BB)245   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
BlkSucc_end(BlkT * BB)246   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
247 
248   /// Iterator for PHI operands.
249   class PHI_iterator {
250   private:
251     MachineInstr *PHI;
252     unsigned idx;
253 
254   public:
PHI_iterator(MachineInstr * P)255     explicit PHI_iterator(MachineInstr *P) // begin iterator
256       : PHI(P), idx(1) {}
PHI_iterator(MachineInstr * P,bool)257     PHI_iterator(MachineInstr *P, bool) // end iterator
258       : PHI(P), idx(PHI->getNumOperands()) {}
259 
operator ++()260     PHI_iterator &operator++() { idx += 2; return *this; }
operator ==(const PHI_iterator & x) const261     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
operator !=(const PHI_iterator & x) const262     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
getIncomingValue()263     unsigned getIncomingValue() { return PHI->getOperand(idx).getReg(); }
getIncomingBlock()264     MachineBasicBlock *getIncomingBlock() {
265       return PHI->getOperand(idx+1).getMBB();
266     }
267   };
PHI_begin(PhiT * PHI)268   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
PHI_end(PhiT * PHI)269   static inline PHI_iterator PHI_end(PhiT *PHI) {
270     return PHI_iterator(PHI, true);
271   }
272 
273   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
274   /// vector.
FindPredecessorBlocks(MachineBasicBlock * BB,SmallVectorImpl<MachineBasicBlock * > * Preds)275   static void FindPredecessorBlocks(MachineBasicBlock *BB,
276                                     SmallVectorImpl<MachineBasicBlock*> *Preds){
277     for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
278            E = BB->pred_end(); PI != E; ++PI)
279       Preds->push_back(*PI);
280   }
281 
282   /// GetUndefVal - Create an IMPLICIT_DEF instruction with a new register.
283   /// Add it into the specified block and return the register.
GetUndefVal(MachineBasicBlock * BB,MachineSSAUpdater * Updater)284   static unsigned GetUndefVal(MachineBasicBlock *BB,
285                               MachineSSAUpdater *Updater) {
286     // Insert an implicit_def to represent an undef value.
287     MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
288                                         BB, BB->getFirstTerminator(),
289                                         Updater->VRC, Updater->MRI,
290                                         Updater->TII);
291     return NewDef->getOperand(0).getReg();
292   }
293 
294   /// CreateEmptyPHI - Create a PHI instruction that defines a new register.
295   /// Add it into the specified block and return the register.
CreateEmptyPHI(MachineBasicBlock * BB,unsigned NumPreds,MachineSSAUpdater * Updater)296   static unsigned CreateEmptyPHI(MachineBasicBlock *BB, unsigned NumPreds,
297                                  MachineSSAUpdater *Updater) {
298     MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->begin();
299     MachineInstr *PHI = InsertNewDef(TargetOpcode::PHI, BB, Loc,
300                                      Updater->VRC, Updater->MRI,
301                                      Updater->TII);
302     return PHI->getOperand(0).getReg();
303   }
304 
305   /// AddPHIOperand - Add the specified value as an operand of the PHI for
306   /// the specified predecessor block.
AddPHIOperand(MachineInstr * PHI,unsigned Val,MachineBasicBlock * Pred)307   static void AddPHIOperand(MachineInstr *PHI, unsigned Val,
308                             MachineBasicBlock *Pred) {
309     MachineInstrBuilder(*Pred->getParent(), PHI).addReg(Val).addMBB(Pred);
310   }
311 
312   /// InstrIsPHI - Check if an instruction is a PHI.
313   ///
InstrIsPHI(MachineInstr * I)314   static MachineInstr *InstrIsPHI(MachineInstr *I) {
315     if (I && I->isPHI())
316       return I;
317     return nullptr;
318   }
319 
320   /// ValueIsPHI - Check if the instruction that defines the specified register
321   /// is a PHI instruction.
ValueIsPHI(unsigned Val,MachineSSAUpdater * Updater)322   static MachineInstr *ValueIsPHI(unsigned Val, MachineSSAUpdater *Updater) {
323     return InstrIsPHI(Updater->MRI->getVRegDef(Val));
324   }
325 
326   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
327   /// operands, i.e., it was just added.
ValueIsNewPHI(unsigned Val,MachineSSAUpdater * Updater)328   static MachineInstr *ValueIsNewPHI(unsigned Val, MachineSSAUpdater *Updater) {
329     MachineInstr *PHI = ValueIsPHI(Val, Updater);
330     if (PHI && PHI->getNumOperands() <= 1)
331       return PHI;
332     return nullptr;
333   }
334 
335   /// GetPHIValue - For the specified PHI instruction, return the register
336   /// that it defines.
GetPHIValue(MachineInstr * PHI)337   static unsigned GetPHIValue(MachineInstr *PHI) {
338     return PHI->getOperand(0).getReg();
339   }
340 };
341 
342 } // End llvm namespace
343 
344 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
345 /// for the specified BB and if so, return it.  If not, construct SSA form by
346 /// first calculating the required placement of PHIs and then inserting new
347 /// PHIs where needed.
GetValueAtEndOfBlockInternal(MachineBasicBlock * BB)348 unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
349   AvailableValsTy &AvailableVals = getAvailableVals(AV);
350   if (unsigned V = AvailableVals[BB])
351     return V;
352 
353   SSAUpdaterImpl<MachineSSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
354   return Impl.GetValue(BB);
355 }
356