• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SparseBitVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachinePostDominators.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "machine-sink"
40 
41 static cl::opt<bool>
42 SplitEdges("machine-sink-split",
43            cl::desc("Split critical edges during machine sinking"),
44            cl::init(true), cl::Hidden);
45 
46 static cl::opt<bool>
47 UseBlockFreqInfo("machine-sink-bfi",
48            cl::desc("Use block frequency info to find successors to sink"),
49            cl::init(true), cl::Hidden);
50 
51 
52 STATISTIC(NumSunk,      "Number of machine instructions sunk");
53 STATISTIC(NumSplit,     "Number of critical edges split");
54 STATISTIC(NumCoalesces, "Number of copies coalesced");
55 
56 namespace {
57   class MachineSinking : public MachineFunctionPass {
58     const TargetInstrInfo *TII;
59     const TargetRegisterInfo *TRI;
60     MachineRegisterInfo  *MRI;     // Machine register information
61     MachineDominatorTree *DT;      // Machine dominator tree
62     MachinePostDominatorTree *PDT; // Machine post dominator tree
63     MachineLoopInfo *LI;
64     const MachineBlockFrequencyInfo *MBFI;
65     AliasAnalysis *AA;
66 
67     // Remember which edges have been considered for breaking.
68     SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
69     CEBCandidates;
70     // Remember which edges we are about to split.
71     // This is different from CEBCandidates since those edges
72     // will be split.
73     SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
74 
75     SparseBitVector<> RegsToClearKillFlags;
76 
77     typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>
78         AllSuccsCache;
79 
80   public:
81     static char ID; // Pass identification
MachineSinking()82     MachineSinking() : MachineFunctionPass(ID) {
83       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
84     }
85 
86     bool runOnMachineFunction(MachineFunction &MF) override;
87 
getAnalysisUsage(AnalysisUsage & AU) const88     void getAnalysisUsage(AnalysisUsage &AU) const override {
89       AU.setPreservesCFG();
90       MachineFunctionPass::getAnalysisUsage(AU);
91       AU.addRequired<AAResultsWrapperPass>();
92       AU.addRequired<MachineDominatorTree>();
93       AU.addRequired<MachinePostDominatorTree>();
94       AU.addRequired<MachineLoopInfo>();
95       AU.addPreserved<MachineDominatorTree>();
96       AU.addPreserved<MachinePostDominatorTree>();
97       AU.addPreserved<MachineLoopInfo>();
98       if (UseBlockFreqInfo)
99         AU.addRequired<MachineBlockFrequencyInfo>();
100     }
101 
releaseMemory()102     void releaseMemory() override {
103       CEBCandidates.clear();
104     }
105 
106   private:
107     bool ProcessBlock(MachineBasicBlock &MBB);
108     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
109                                      MachineBasicBlock *From,
110                                      MachineBasicBlock *To);
111     /// \brief Postpone the splitting of the given critical
112     /// edge (\p From, \p To).
113     ///
114     /// We do not split the edges on the fly. Indeed, this invalidates
115     /// the dominance information and thus triggers a lot of updates
116     /// of that information underneath.
117     /// Instead, we postpone all the splits after each iteration of
118     /// the main loop. That way, the information is at least valid
119     /// for the lifetime of an iteration.
120     ///
121     /// \return True if the edge is marked as toSplit, false otherwise.
122     /// False can be returned if, for instance, this is not profitable.
123     bool PostponeSplitCriticalEdge(MachineInstr &MI,
124                                    MachineBasicBlock *From,
125                                    MachineBasicBlock *To,
126                                    bool BreakPHIEdge);
127     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
128                          AllSuccsCache &AllSuccessors);
129     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
130                                  MachineBasicBlock *DefMBB,
131                                  bool &BreakPHIEdge, bool &LocalUse) const;
132     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
133                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
134     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
135                               MachineBasicBlock *MBB,
136                               MachineBasicBlock *SuccToSinkTo,
137                               AllSuccsCache &AllSuccessors);
138 
139     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
140                                          MachineBasicBlock *MBB);
141 
142     SmallVector<MachineBasicBlock *, 4> &
143     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
144                            AllSuccsCache &AllSuccessors) const;
145   };
146 } // end anonymous namespace
147 
148 char MachineSinking::ID = 0;
149 char &llvm::MachineSinkingID = MachineSinking::ID;
150 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
151                 "Machine code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)152 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
153 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
155 INITIALIZE_PASS_END(MachineSinking, "machine-sink",
156                 "Machine code sinking", false, false)
157 
158 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
159                                                      MachineBasicBlock *MBB) {
160   if (!MI.isCopy())
161     return false;
162 
163   unsigned SrcReg = MI.getOperand(1).getReg();
164   unsigned DstReg = MI.getOperand(0).getReg();
165   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
166       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
167       !MRI->hasOneNonDBGUse(SrcReg))
168     return false;
169 
170   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
171   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
172   if (SRC != DRC)
173     return false;
174 
175   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
176   if (DefMI->isCopyLike())
177     return false;
178   DEBUG(dbgs() << "Coalescing: " << *DefMI);
179   DEBUG(dbgs() << "*** to: " << MI);
180   MRI->replaceRegWith(DstReg, SrcReg);
181   MI.eraseFromParent();
182 
183   // Conservatively, clear any kill flags, since it's possible that they are no
184   // longer correct.
185   MRI->clearKillFlags(SrcReg);
186 
187   ++NumCoalesces;
188   return true;
189 }
190 
191 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
192 /// occur in blocks dominated by the specified block. If any use is in the
193 /// definition block, then return false since it is never legal to move def
194 /// after uses.
195 bool
AllUsesDominatedByBlock(unsigned Reg,MachineBasicBlock * MBB,MachineBasicBlock * DefMBB,bool & BreakPHIEdge,bool & LocalUse) const196 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
197                                         MachineBasicBlock *MBB,
198                                         MachineBasicBlock *DefMBB,
199                                         bool &BreakPHIEdge,
200                                         bool &LocalUse) const {
201   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
202          "Only makes sense for vregs");
203 
204   // Ignore debug uses because debug info doesn't affect the code.
205   if (MRI->use_nodbg_empty(Reg))
206     return true;
207 
208   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
209   // into and they are all PHI nodes. In this case, machine-sink must break
210   // the critical edge first. e.g.
211   //
212   // BB#1: derived from LLVM BB %bb4.preheader
213   //   Predecessors according to CFG: BB#0
214   //     ...
215   //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
216   //     ...
217   //     JE_4 <BB#37>, %EFLAGS<imp-use>
218   //   Successors according to CFG: BB#37 BB#2
219   //
220   // BB#2: derived from LLVM BB %bb.nph
221   //   Predecessors according to CFG: BB#0 BB#1
222   //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
223   BreakPHIEdge = true;
224   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
225     MachineInstr *UseInst = MO.getParent();
226     unsigned OpNo = &MO - &UseInst->getOperand(0);
227     MachineBasicBlock *UseBlock = UseInst->getParent();
228     if (!(UseBlock == MBB && UseInst->isPHI() &&
229           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
230       BreakPHIEdge = false;
231       break;
232     }
233   }
234   if (BreakPHIEdge)
235     return true;
236 
237   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
238     // Determine the block of the use.
239     MachineInstr *UseInst = MO.getParent();
240     unsigned OpNo = &MO - &UseInst->getOperand(0);
241     MachineBasicBlock *UseBlock = UseInst->getParent();
242     if (UseInst->isPHI()) {
243       // PHI nodes use the operand in the predecessor block, not the block with
244       // the PHI.
245       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
246     } else if (UseBlock == DefMBB) {
247       LocalUse = true;
248       return false;
249     }
250 
251     // Check that it dominates.
252     if (!DT->dominates(MBB, UseBlock))
253       return false;
254   }
255 
256   return true;
257 }
258 
runOnMachineFunction(MachineFunction & MF)259 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
260   if (skipFunction(*MF.getFunction()))
261     return false;
262 
263   DEBUG(dbgs() << "******** Machine Sinking ********\n");
264 
265   TII = MF.getSubtarget().getInstrInfo();
266   TRI = MF.getSubtarget().getRegisterInfo();
267   MRI = &MF.getRegInfo();
268   DT = &getAnalysis<MachineDominatorTree>();
269   PDT = &getAnalysis<MachinePostDominatorTree>();
270   LI = &getAnalysis<MachineLoopInfo>();
271   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
272   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
273 
274   bool EverMadeChange = false;
275 
276   while (1) {
277     bool MadeChange = false;
278 
279     // Process all basic blocks.
280     CEBCandidates.clear();
281     ToSplit.clear();
282     for (auto &MBB: MF)
283       MadeChange |= ProcessBlock(MBB);
284 
285     // If we have anything we marked as toSplit, split it now.
286     for (auto &Pair : ToSplit) {
287       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
288       if (NewSucc != nullptr) {
289         DEBUG(dbgs() << " *** Splitting critical edge:"
290               " BB#" << Pair.first->getNumber()
291               << " -- BB#" << NewSucc->getNumber()
292               << " -- BB#" << Pair.second->getNumber() << '\n');
293         MadeChange = true;
294         ++NumSplit;
295       } else
296         DEBUG(dbgs() << " *** Not legal to break critical edge\n");
297     }
298     // If this iteration over the code changed anything, keep iterating.
299     if (!MadeChange) break;
300     EverMadeChange = true;
301   }
302 
303   // Now clear any kill flags for recorded registers.
304   for (auto I : RegsToClearKillFlags)
305     MRI->clearKillFlags(I);
306   RegsToClearKillFlags.clear();
307 
308   return EverMadeChange;
309 }
310 
ProcessBlock(MachineBasicBlock & MBB)311 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
312   // Can't sink anything out of a block that has less than two successors.
313   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
314 
315   // Don't bother sinking code out of unreachable blocks. In addition to being
316   // unprofitable, it can also lead to infinite looping, because in an
317   // unreachable loop there may be nowhere to stop.
318   if (!DT->isReachableFromEntry(&MBB)) return false;
319 
320   bool MadeChange = false;
321 
322   // Cache all successors, sorted by frequency info and loop depth.
323   AllSuccsCache AllSuccessors;
324 
325   // Walk the basic block bottom-up.  Remember if we saw a store.
326   MachineBasicBlock::iterator I = MBB.end();
327   --I;
328   bool ProcessedBegin, SawStore = false;
329   do {
330     MachineInstr &MI = *I;  // The instruction to sink.
331 
332     // Predecrement I (if it's not begin) so that it isn't invalidated by
333     // sinking.
334     ProcessedBegin = I == MBB.begin();
335     if (!ProcessedBegin)
336       --I;
337 
338     if (MI.isDebugValue())
339       continue;
340 
341     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
342     if (Joined) {
343       MadeChange = true;
344       continue;
345     }
346 
347     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
348       ++NumSunk;
349       MadeChange = true;
350     }
351 
352     // If we just processed the first instruction in the block, we're done.
353   } while (!ProcessedBegin);
354 
355   return MadeChange;
356 }
357 
isWorthBreakingCriticalEdge(MachineInstr & MI,MachineBasicBlock * From,MachineBasicBlock * To)358 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
359                                                  MachineBasicBlock *From,
360                                                  MachineBasicBlock *To) {
361   // FIXME: Need much better heuristics.
362 
363   // If the pass has already considered breaking this edge (during this pass
364   // through the function), then let's go ahead and break it. This means
365   // sinking multiple "cheap" instructions into the same block.
366   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
367     return true;
368 
369   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
370     return true;
371 
372   // MI is cheap, we probably don't want to break the critical edge for it.
373   // However, if this would allow some definitions of its source operands
374   // to be sunk then it's probably worth it.
375   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
376     const MachineOperand &MO = MI.getOperand(i);
377     if (!MO.isReg() || !MO.isUse())
378       continue;
379     unsigned Reg = MO.getReg();
380     if (Reg == 0)
381       continue;
382 
383     // We don't move live definitions of physical registers,
384     // so sinking their uses won't enable any opportunities.
385     if (TargetRegisterInfo::isPhysicalRegister(Reg))
386       continue;
387 
388     // If this instruction is the only user of a virtual register,
389     // check if breaking the edge will enable sinking
390     // both this instruction and the defining instruction.
391     if (MRI->hasOneNonDBGUse(Reg)) {
392       // If the definition resides in same MBB,
393       // claim it's likely we can sink these together.
394       // If definition resides elsewhere, we aren't
395       // blocking it from being sunk so don't break the edge.
396       MachineInstr *DefMI = MRI->getVRegDef(Reg);
397       if (DefMI->getParent() == MI.getParent())
398         return true;
399     }
400   }
401 
402   return false;
403 }
404 
PostponeSplitCriticalEdge(MachineInstr & MI,MachineBasicBlock * FromBB,MachineBasicBlock * ToBB,bool BreakPHIEdge)405 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
406                                                MachineBasicBlock *FromBB,
407                                                MachineBasicBlock *ToBB,
408                                                bool BreakPHIEdge) {
409   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
410     return false;
411 
412   // Avoid breaking back edge. From == To means backedge for single BB loop.
413   if (!SplitEdges || FromBB == ToBB)
414     return false;
415 
416   // Check for backedges of more "complex" loops.
417   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
418       LI->isLoopHeader(ToBB))
419     return false;
420 
421   // It's not always legal to break critical edges and sink the computation
422   // to the edge.
423   //
424   // BB#1:
425   // v1024
426   // Beq BB#3
427   // <fallthrough>
428   // BB#2:
429   // ... no uses of v1024
430   // <fallthrough>
431   // BB#3:
432   // ...
433   //       = v1024
434   //
435   // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
436   //
437   // BB#1:
438   // ...
439   // Bne BB#2
440   // BB#4:
441   // v1024 =
442   // B BB#3
443   // BB#2:
444   // ... no uses of v1024
445   // <fallthrough>
446   // BB#3:
447   // ...
448   //       = v1024
449   //
450   // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
451   // flow. We need to ensure the new basic block where the computation is
452   // sunk to dominates all the uses.
453   // It's only legal to break critical edge and sink the computation to the
454   // new block if all the predecessors of "To", except for "From", are
455   // not dominated by "From". Given SSA property, this means these
456   // predecessors are dominated by "To".
457   //
458   // There is no need to do this check if all the uses are PHI nodes. PHI
459   // sources are only defined on the specific predecessor edges.
460   if (!BreakPHIEdge) {
461     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
462            E = ToBB->pred_end(); PI != E; ++PI) {
463       if (*PI == FromBB)
464         continue;
465       if (!DT->dominates(ToBB, *PI))
466         return false;
467     }
468   }
469 
470   ToSplit.insert(std::make_pair(FromBB, ToBB));
471 
472   return true;
473 }
474 
475 /// collectDebgValues - Scan instructions following MI and collect any
476 /// matching DBG_VALUEs.
collectDebugValues(MachineInstr & MI,SmallVectorImpl<MachineInstr * > & DbgValues)477 static void collectDebugValues(MachineInstr &MI,
478                                SmallVectorImpl<MachineInstr *> &DbgValues) {
479   DbgValues.clear();
480   if (!MI.getOperand(0).isReg())
481     return;
482 
483   MachineBasicBlock::iterator DI = MI; ++DI;
484   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
485        DI != DE; ++DI) {
486     if (!DI->isDebugValue())
487       return;
488     if (DI->getOperand(0).isReg() &&
489         DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
490       DbgValues.push_back(&*DI);
491   }
492 }
493 
494 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
isProfitableToSinkTo(unsigned Reg,MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * SuccToSinkTo,AllSuccsCache & AllSuccessors)495 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
496                                           MachineBasicBlock *MBB,
497                                           MachineBasicBlock *SuccToSinkTo,
498                                           AllSuccsCache &AllSuccessors) {
499   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
500 
501   if (MBB == SuccToSinkTo)
502     return false;
503 
504   // It is profitable if SuccToSinkTo does not post dominate current block.
505   if (!PDT->dominates(SuccToSinkTo, MBB))
506     return true;
507 
508   // It is profitable to sink an instruction from a deeper loop to a shallower
509   // loop, even if the latter post-dominates the former (PR21115).
510   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
511     return true;
512 
513   // Check if only use in post dominated block is PHI instruction.
514   bool NonPHIUse = false;
515   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
516     MachineBasicBlock *UseBlock = UseInst.getParent();
517     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
518       NonPHIUse = true;
519   }
520   if (!NonPHIUse)
521     return true;
522 
523   // If SuccToSinkTo post dominates then also it may be profitable if MI
524   // can further profitably sinked into another block in next round.
525   bool BreakPHIEdge = false;
526   // FIXME - If finding successor is compile time expensive then cache results.
527   if (MachineBasicBlock *MBB2 =
528           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
529     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
530 
531   // If SuccToSinkTo is final destination and it is a post dominator of current
532   // block then it is not profitable to sink MI into SuccToSinkTo block.
533   return false;
534 }
535 
536 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
537 /// computing it if it was not already cached.
538 SmallVector<MachineBasicBlock *, 4> &
GetAllSortedSuccessors(MachineInstr & MI,MachineBasicBlock * MBB,AllSuccsCache & AllSuccessors) const539 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
540                                        AllSuccsCache &AllSuccessors) const {
541 
542   // Do we have the sorted successors in cache ?
543   auto Succs = AllSuccessors.find(MBB);
544   if (Succs != AllSuccessors.end())
545     return Succs->second;
546 
547   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
548                                                MBB->succ_end());
549 
550   // Handle cases where sinking can happen but where the sink point isn't a
551   // successor. For example:
552   //
553   //   x = computation
554   //   if () {} else {}
555   //   use x
556   //
557   const std::vector<MachineDomTreeNode *> &Children =
558     DT->getNode(MBB)->getChildren();
559   for (const auto &DTChild : Children)
560     // DomTree children of MBB that have MBB as immediate dominator are added.
561     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
562         // Skip MBBs already added to the AllSuccs vector above.
563         !MBB->isSuccessor(DTChild->getBlock()))
564       AllSuccs.push_back(DTChild->getBlock());
565 
566   // Sort Successors according to their loop depth or block frequency info.
567   std::stable_sort(
568       AllSuccs.begin(), AllSuccs.end(),
569       [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
570         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
571         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
572         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
573         return HasBlockFreq ? LHSFreq < RHSFreq
574                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
575       });
576 
577   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
578 
579   return it.first->second;
580 }
581 
582 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
583 MachineBasicBlock *
FindSuccToSinkTo(MachineInstr & MI,MachineBasicBlock * MBB,bool & BreakPHIEdge,AllSuccsCache & AllSuccessors)584 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
585                                  bool &BreakPHIEdge,
586                                  AllSuccsCache &AllSuccessors) {
587   assert (MBB && "Invalid MachineBasicBlock!");
588 
589   // Loop over all the operands of the specified instruction.  If there is
590   // anything we can't handle, bail out.
591 
592   // SuccToSinkTo - This is the successor to sink this instruction to, once we
593   // decide.
594   MachineBasicBlock *SuccToSinkTo = nullptr;
595   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
596     const MachineOperand &MO = MI.getOperand(i);
597     if (!MO.isReg()) continue;  // Ignore non-register operands.
598 
599     unsigned Reg = MO.getReg();
600     if (Reg == 0) continue;
601 
602     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
603       if (MO.isUse()) {
604         // If the physreg has no defs anywhere, it's just an ambient register
605         // and we can freely move its uses. Alternatively, if it's allocatable,
606         // it could get allocated to something with a def during allocation.
607         if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
608           return nullptr;
609       } else if (!MO.isDead()) {
610         // A def that isn't dead. We can't move it.
611         return nullptr;
612       }
613     } else {
614       // Virtual register uses are always safe to sink.
615       if (MO.isUse()) continue;
616 
617       // If it's not safe to move defs of the register class, then abort.
618       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
619         return nullptr;
620 
621       // Virtual register defs can only be sunk if all their uses are in blocks
622       // dominated by one of the successors.
623       if (SuccToSinkTo) {
624         // If a previous operand picked a block to sink to, then this operand
625         // must be sinkable to the same block.
626         bool LocalUse = false;
627         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
628                                      BreakPHIEdge, LocalUse))
629           return nullptr;
630 
631         continue;
632       }
633 
634       // Otherwise, we should look at all the successors and decide which one
635       // we should sink to. If we have reliable block frequency information
636       // (frequency != 0) available, give successors with smaller frequencies
637       // higher priority, otherwise prioritize smaller loop depths.
638       for (MachineBasicBlock *SuccBlock :
639            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
640         bool LocalUse = false;
641         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
642                                     BreakPHIEdge, LocalUse)) {
643           SuccToSinkTo = SuccBlock;
644           break;
645         }
646         if (LocalUse)
647           // Def is used locally, it's never safe to move this def.
648           return nullptr;
649       }
650 
651       // If we couldn't find a block to sink to, ignore this instruction.
652       if (!SuccToSinkTo)
653         return nullptr;
654       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
655         return nullptr;
656     }
657   }
658 
659   // It is not possible to sink an instruction into its own block.  This can
660   // happen with loops.
661   if (MBB == SuccToSinkTo)
662     return nullptr;
663 
664   // It's not safe to sink instructions to EH landing pad. Control flow into
665   // landing pad is implicitly defined.
666   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
667     return nullptr;
668 
669   return SuccToSinkTo;
670 }
671 
672 /// \brief Return true if MI is likely to be usable as a memory operation by the
673 /// implicit null check optimization.
674 ///
675 /// This is a "best effort" heuristic, and should not be relied upon for
676 /// correctness.  This returning true does not guarantee that the implicit null
677 /// check optimization is legal over MI, and this returning false does not
678 /// guarantee MI cannot possibly be used to do a null check.
SinkingPreventsImplicitNullCheck(MachineInstr & MI,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)679 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
680                                              const TargetInstrInfo *TII,
681                                              const TargetRegisterInfo *TRI) {
682   typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate;
683 
684   auto *MBB = MI.getParent();
685   if (MBB->pred_size() != 1)
686     return false;
687 
688   auto *PredMBB = *MBB->pred_begin();
689   auto *PredBB = PredMBB->getBasicBlock();
690 
691   // Frontends that don't use implicit null checks have no reason to emit
692   // branches with make.implicit metadata, and this function should always
693   // return false for them.
694   if (!PredBB ||
695       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
696     return false;
697 
698   unsigned BaseReg;
699   int64_t Offset;
700   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
701     return false;
702 
703   if (!(MI.mayLoad() && !MI.isPredicable()))
704     return false;
705 
706   MachineBranchPredicate MBP;
707   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
708     return false;
709 
710   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
711          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
712           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
713          MBP.LHS.getReg() == BaseReg;
714 }
715 
716 /// SinkInstruction - Determine whether it is safe to sink the specified machine
717 /// instruction out of its current block into a successor.
SinkInstruction(MachineInstr & MI,bool & SawStore,AllSuccsCache & AllSuccessors)718 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
719                                      AllSuccsCache &AllSuccessors) {
720   // Don't sink instructions that the target prefers not to sink.
721   if (!TII->shouldSink(MI))
722     return false;
723 
724   // Check if it's safe to move the instruction.
725   if (!MI.isSafeToMove(AA, SawStore))
726     return false;
727 
728   // Convergent operations may not be made control-dependent on additional
729   // values.
730   if (MI.isConvergent())
731     return false;
732 
733   // Don't break implicit null checks.  This is a performance heuristic, and not
734   // required for correctness.
735   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
736     return false;
737 
738   // FIXME: This should include support for sinking instructions within the
739   // block they are currently in to shorten the live ranges.  We often get
740   // instructions sunk into the top of a large block, but it would be better to
741   // also sink them down before their first use in the block.  This xform has to
742   // be careful not to *increase* register pressure though, e.g. sinking
743   // "x = y + z" down if it kills y and z would increase the live ranges of y
744   // and z and only shrink the live range of x.
745 
746   bool BreakPHIEdge = false;
747   MachineBasicBlock *ParentBlock = MI.getParent();
748   MachineBasicBlock *SuccToSinkTo =
749       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
750 
751   // If there are no outputs, it must have side-effects.
752   if (!SuccToSinkTo)
753     return false;
754 
755 
756   // If the instruction to move defines a dead physical register which is live
757   // when leaving the basic block, don't move it because it could turn into a
758   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
759   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
760     const MachineOperand &MO = MI.getOperand(I);
761     if (!MO.isReg()) continue;
762     unsigned Reg = MO.getReg();
763     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
764     if (SuccToSinkTo->isLiveIn(Reg))
765       return false;
766   }
767 
768   DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
769 
770   // If the block has multiple predecessors, this is a critical edge.
771   // Decide if we can sink along it or need to break the edge.
772   if (SuccToSinkTo->pred_size() > 1) {
773     // We cannot sink a load across a critical edge - there may be stores in
774     // other code paths.
775     bool TryBreak = false;
776     bool store = true;
777     if (!MI.isSafeToMove(AA, store)) {
778       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
779       TryBreak = true;
780     }
781 
782     // We don't want to sink across a critical edge if we don't dominate the
783     // successor. We could be introducing calculations to new code paths.
784     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
785       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
786       TryBreak = true;
787     }
788 
789     // Don't sink instructions into a loop.
790     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
791       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
792       TryBreak = true;
793     }
794 
795     // Otherwise we are OK with sinking along a critical edge.
796     if (!TryBreak)
797       DEBUG(dbgs() << "Sinking along critical edge.\n");
798     else {
799       // Mark this edge as to be split.
800       // If the edge can actually be split, the next iteration of the main loop
801       // will sink MI in the newly created block.
802       bool Status =
803         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
804       if (!Status)
805         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
806               "break critical edge\n");
807       // The instruction will not be sunk this time.
808       return false;
809     }
810   }
811 
812   if (BreakPHIEdge) {
813     // BreakPHIEdge is true if all the uses are in the successor MBB being
814     // sunken into and they are all PHI nodes. In this case, machine-sink must
815     // break the critical edge first.
816     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
817                                             SuccToSinkTo, BreakPHIEdge);
818     if (!Status)
819       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
820             "break critical edge\n");
821     // The instruction will not be sunk this time.
822     return false;
823   }
824 
825   // Determine where to insert into. Skip phi nodes.
826   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
827   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
828     ++InsertPos;
829 
830   // collect matching debug values.
831   SmallVector<MachineInstr *, 2> DbgValuesToSink;
832   collectDebugValues(MI, DbgValuesToSink);
833 
834   // Move the instruction.
835   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
836                        ++MachineBasicBlock::iterator(MI));
837 
838   // Move debug values.
839   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
840          DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
841     MachineInstr *DbgMI = *DBI;
842     SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
843                          ++MachineBasicBlock::iterator(DbgMI));
844   }
845 
846   // Conservatively, clear any kill flags, since it's possible that they are no
847   // longer correct.
848   // Note that we have to clear the kill flags for any register this instruction
849   // uses as we may sink over another instruction which currently kills the
850   // used registers.
851   for (MachineOperand &MO : MI.operands()) {
852     if (MO.isReg() && MO.isUse())
853       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
854   }
855 
856   return true;
857 }
858