1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/IndexedMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/RegAllocRegistry.h"
29 #include "llvm/CodeGen/RegisterClassInfo.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <algorithm>
36 using namespace llvm;
37
38 #define DEBUG_TYPE "regalloc"
39
40 STATISTIC(NumStores, "Number of stores added");
41 STATISTIC(NumLoads , "Number of loads added");
42 STATISTIC(NumCopies, "Number of copies coalesced");
43
44 static RegisterRegAlloc
45 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
46
47 namespace {
48 class RAFast : public MachineFunctionPass {
49 public:
50 static char ID;
RAFast()51 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
52 isBulkSpilling(false) {}
53
54 private:
55 MachineFunction *MF;
56 MachineRegisterInfo *MRI;
57 const TargetRegisterInfo *TRI;
58 const TargetInstrInfo *TII;
59 RegisterClassInfo RegClassInfo;
60
61 // Basic block currently being allocated.
62 MachineBasicBlock *MBB;
63
64 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
65 // values are spilled.
66 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
67
68 // Everything we know about a live virtual register.
69 struct LiveReg {
70 MachineInstr *LastUse; // Last instr to use reg.
71 unsigned VirtReg; // Virtual register number.
72 unsigned PhysReg; // Currently held here.
73 unsigned short LastOpNum; // OpNum on LastUse.
74 bool Dirty; // Register needs spill.
75
LiveReg__anon65ad56180111::RAFast::LiveReg76 explicit LiveReg(unsigned v)
77 : LastUse(nullptr), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false){}
78
getSparseSetIndex__anon65ad56180111::RAFast::LiveReg79 unsigned getSparseSetIndex() const {
80 return TargetRegisterInfo::virtReg2Index(VirtReg);
81 }
82 };
83
84 typedef SparseSet<LiveReg> LiveRegMap;
85
86 // LiveVirtRegs - This map contains entries for each virtual register
87 // that is currently available in a physical register.
88 LiveRegMap LiveVirtRegs;
89
90 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
91
92 // RegState - Track the state of a physical register.
93 enum RegState {
94 // A disabled register is not available for allocation, but an alias may
95 // be in use. A register can only be moved out of the disabled state if
96 // all aliases are disabled.
97 regDisabled,
98
99 // A free register is not currently in use and can be allocated
100 // immediately without checking aliases.
101 regFree,
102
103 // A reserved register has been assigned explicitly (e.g., setting up a
104 // call parameter), and it remains reserved until it is used.
105 regReserved
106
107 // A register state may also be a virtual register number, indication that
108 // the physical register is currently allocated to a virtual register. In
109 // that case, LiveVirtRegs contains the inverse mapping.
110 };
111
112 // PhysRegState - One of the RegState enums, or a virtreg.
113 std::vector<unsigned> PhysRegState;
114
115 // Set of register units.
116 typedef SparseSet<unsigned> UsedInInstrSet;
117
118 // Set of register units that are used in the current instruction, and so
119 // cannot be allocated.
120 UsedInInstrSet UsedInInstr;
121
122 // Mark a physreg as used in this instruction.
markRegUsedInInstr(unsigned PhysReg)123 void markRegUsedInInstr(unsigned PhysReg) {
124 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
125 UsedInInstr.insert(*Units);
126 }
127
128 // Check if a physreg or any of its aliases are used in this instruction.
isRegUsedInInstr(unsigned PhysReg) const129 bool isRegUsedInInstr(unsigned PhysReg) const {
130 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
131 if (UsedInInstr.count(*Units))
132 return true;
133 return false;
134 }
135
136 // SkippedInstrs - Descriptors of instructions whose clobber list was
137 // ignored because all registers were spilled. It is still necessary to
138 // mark all the clobbered registers as used by the function.
139 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
140
141 // isBulkSpilling - This flag is set when LiveRegMap will be cleared
142 // completely after spilling all live registers. LiveRegMap entries should
143 // not be erased.
144 bool isBulkSpilling;
145
146 enum : unsigned {
147 spillClean = 1,
148 spillDirty = 100,
149 spillImpossible = ~0u
150 };
151 public:
getPassName() const152 const char *getPassName() const override {
153 return "Fast Register Allocator";
154 }
155
getAnalysisUsage(AnalysisUsage & AU) const156 void getAnalysisUsage(AnalysisUsage &AU) const override {
157 AU.setPreservesCFG();
158 MachineFunctionPass::getAnalysisUsage(AU);
159 }
160
getSetProperties() const161 MachineFunctionProperties getSetProperties() const override {
162 return MachineFunctionProperties().set(
163 MachineFunctionProperties::Property::AllVRegsAllocated);
164 }
165
166 private:
167 bool runOnMachineFunction(MachineFunction &Fn) override;
168 void AllocateBasicBlock();
169 void handleThroughOperands(MachineInstr *MI,
170 SmallVectorImpl<unsigned> &VirtDead);
171 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
172 bool isLastUseOfLocalReg(MachineOperand&);
173
174 void addKillFlag(const LiveReg&);
175 void killVirtReg(LiveRegMap::iterator);
176 void killVirtReg(unsigned VirtReg);
177 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
178 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
179
180 void usePhysReg(MachineOperand&);
181 void definePhysReg(MachineInstr &MI, unsigned PhysReg, RegState NewState);
182 unsigned calcSpillCost(unsigned PhysReg) const;
183 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
findLiveVirtReg(unsigned VirtReg)184 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
185 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
186 }
findLiveVirtReg(unsigned VirtReg) const187 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
188 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
189 }
190 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
191 LiveRegMap::iterator allocVirtReg(MachineInstr &MI, LiveRegMap::iterator,
192 unsigned Hint);
193 LiveRegMap::iterator defineVirtReg(MachineInstr &MI, unsigned OpNum,
194 unsigned VirtReg, unsigned Hint);
195 LiveRegMap::iterator reloadVirtReg(MachineInstr &MI, unsigned OpNum,
196 unsigned VirtReg, unsigned Hint);
197 void spillAll(MachineBasicBlock::iterator MI);
198 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
199 };
200 char RAFast::ID = 0;
201 }
202
203 /// getStackSpaceFor - This allocates space for the specified virtual register
204 /// to be held on the stack.
getStackSpaceFor(unsigned VirtReg,const TargetRegisterClass * RC)205 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
206 // Find the location Reg would belong...
207 int SS = StackSlotForVirtReg[VirtReg];
208 if (SS != -1)
209 return SS; // Already has space allocated?
210
211 // Allocate a new stack object for this spill location...
212 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
213 RC->getAlignment());
214
215 // Assign the slot.
216 StackSlotForVirtReg[VirtReg] = FrameIdx;
217 return FrameIdx;
218 }
219
220 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
221 /// its virtual register, and it is guaranteed to be a block-local register.
222 ///
isLastUseOfLocalReg(MachineOperand & MO)223 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
224 // If the register has ever been spilled or reloaded, we conservatively assume
225 // it is a global register used in multiple blocks.
226 if (StackSlotForVirtReg[MO.getReg()] != -1)
227 return false;
228
229 // Check that the use/def chain has exactly one operand - MO.
230 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
231 if (&*I != &MO)
232 return false;
233 return ++I == MRI->reg_nodbg_end();
234 }
235
236 /// addKillFlag - Set kill flags on last use of a virtual register.
addKillFlag(const LiveReg & LR)237 void RAFast::addKillFlag(const LiveReg &LR) {
238 if (!LR.LastUse) return;
239 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
240 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
241 if (MO.getReg() == LR.PhysReg)
242 MO.setIsKill();
243 else
244 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
245 }
246 }
247
248 /// killVirtReg - Mark virtreg as no longer available.
killVirtReg(LiveRegMap::iterator LRI)249 void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
250 addKillFlag(*LRI);
251 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
252 "Broken RegState mapping");
253 PhysRegState[LRI->PhysReg] = regFree;
254 // Erase from LiveVirtRegs unless we're spilling in bulk.
255 if (!isBulkSpilling)
256 LiveVirtRegs.erase(LRI);
257 }
258
259 /// killVirtReg - Mark virtreg as no longer available.
killVirtReg(unsigned VirtReg)260 void RAFast::killVirtReg(unsigned VirtReg) {
261 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
262 "killVirtReg needs a virtual register");
263 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
264 if (LRI != LiveVirtRegs.end())
265 killVirtReg(LRI);
266 }
267
268 /// spillVirtReg - This method spills the value specified by VirtReg into the
269 /// corresponding stack slot if needed.
spillVirtReg(MachineBasicBlock::iterator MI,unsigned VirtReg)270 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
271 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
272 "Spilling a physical register is illegal!");
273 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
274 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
275 spillVirtReg(MI, LRI);
276 }
277
278 /// spillVirtReg - Do the actual work of spilling.
spillVirtReg(MachineBasicBlock::iterator MI,LiveRegMap::iterator LRI)279 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
280 LiveRegMap::iterator LRI) {
281 LiveReg &LR = *LRI;
282 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
283
284 if (LR.Dirty) {
285 // If this physreg is used by the instruction, we want to kill it on the
286 // instruction, not on the spill.
287 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
288 LR.Dirty = false;
289 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
290 << " in " << PrintReg(LR.PhysReg, TRI));
291 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
292 int FI = getStackSpaceFor(LRI->VirtReg, RC);
293 DEBUG(dbgs() << " to stack slot #" << FI << "\n");
294 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
295 ++NumStores; // Update statistics
296
297 // If this register is used by DBG_VALUE then insert new DBG_VALUE to
298 // identify spilled location as the place to find corresponding variable's
299 // value.
300 SmallVectorImpl<MachineInstr *> &LRIDbgValues =
301 LiveDbgValueMap[LRI->VirtReg];
302 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
303 MachineInstr *DBG = LRIDbgValues[li];
304 const MDNode *Var = DBG->getDebugVariable();
305 const MDNode *Expr = DBG->getDebugExpression();
306 bool IsIndirect = DBG->isIndirectDebugValue();
307 uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0;
308 DebugLoc DL = DBG->getDebugLoc();
309 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
310 "Expected inlined-at fields to agree");
311 MachineInstr *NewDV =
312 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE))
313 .addFrameIndex(FI)
314 .addImm(Offset)
315 .addMetadata(Var)
316 .addMetadata(Expr);
317 assert(NewDV->getParent() == MBB && "dangling parent pointer");
318 (void)NewDV;
319 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
320 }
321 // Now this register is spilled there is should not be any DBG_VALUE
322 // pointing to this register because they are all pointing to spilled value
323 // now.
324 LRIDbgValues.clear();
325 if (SpillKill)
326 LR.LastUse = nullptr; // Don't kill register again
327 }
328 killVirtReg(LRI);
329 }
330
331 /// spillAll - Spill all dirty virtregs without killing them.
spillAll(MachineBasicBlock::iterator MI)332 void RAFast::spillAll(MachineBasicBlock::iterator MI) {
333 if (LiveVirtRegs.empty()) return;
334 isBulkSpilling = true;
335 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
336 // of spilling here is deterministic, if arbitrary.
337 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
338 i != e; ++i)
339 spillVirtReg(MI, i);
340 LiveVirtRegs.clear();
341 isBulkSpilling = false;
342 }
343
344 /// usePhysReg - Handle the direct use of a physical register.
345 /// Check that the register is not used by a virtreg.
346 /// Kill the physreg, marking it free.
347 /// This may add implicit kills to MO->getParent() and invalidate MO.
usePhysReg(MachineOperand & MO)348 void RAFast::usePhysReg(MachineOperand &MO) {
349 unsigned PhysReg = MO.getReg();
350 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
351 "Bad usePhysReg operand");
352
353 // Ignore undef uses.
354 if (MO.isUndef())
355 return;
356
357 markRegUsedInInstr(PhysReg);
358 switch (PhysRegState[PhysReg]) {
359 case regDisabled:
360 break;
361 case regReserved:
362 PhysRegState[PhysReg] = regFree;
363 // Fall through
364 case regFree:
365 MO.setIsKill();
366 return;
367 default:
368 // The physreg was allocated to a virtual register. That means the value we
369 // wanted has been clobbered.
370 llvm_unreachable("Instruction uses an allocated register");
371 }
372
373 // Maybe a superregister is reserved?
374 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
375 unsigned Alias = *AI;
376 switch (PhysRegState[Alias]) {
377 case regDisabled:
378 break;
379 case regReserved:
380 // Either PhysReg is a subregister of Alias and we mark the
381 // whole register as free, or PhysReg is the superregister of
382 // Alias and we mark all the aliases as disabled before freeing
383 // PhysReg.
384 // In the latter case, since PhysReg was disabled, this means that
385 // its value is defined only by physical sub-registers. This check
386 // is performed by the assert of the default case in this loop.
387 // Note: The value of the superregister may only be partial
388 // defined, that is why regDisabled is a valid state for aliases.
389 assert((TRI->isSuperRegister(PhysReg, Alias) ||
390 TRI->isSuperRegister(Alias, PhysReg)) &&
391 "Instruction is not using a subregister of a reserved register");
392 // Fall through.
393 case regFree:
394 if (TRI->isSuperRegister(PhysReg, Alias)) {
395 // Leave the superregister in the working set.
396 PhysRegState[Alias] = regFree;
397 MO.getParent()->addRegisterKilled(Alias, TRI, true);
398 return;
399 }
400 // Some other alias was in the working set - clear it.
401 PhysRegState[Alias] = regDisabled;
402 break;
403 default:
404 llvm_unreachable("Instruction uses an alias of an allocated register");
405 }
406 }
407
408 // All aliases are disabled, bring register into working set.
409 PhysRegState[PhysReg] = regFree;
410 MO.setIsKill();
411 }
412
413 /// definePhysReg - Mark PhysReg as reserved or free after spilling any
414 /// virtregs. This is very similar to defineVirtReg except the physreg is
415 /// reserved instead of allocated.
definePhysReg(MachineInstr & MI,unsigned PhysReg,RegState NewState)416 void RAFast::definePhysReg(MachineInstr &MI, unsigned PhysReg,
417 RegState NewState) {
418 markRegUsedInInstr(PhysReg);
419 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
420 case regDisabled:
421 break;
422 default:
423 spillVirtReg(MI, VirtReg);
424 // Fall through.
425 case regFree:
426 case regReserved:
427 PhysRegState[PhysReg] = NewState;
428 return;
429 }
430
431 // This is a disabled register, disable all aliases.
432 PhysRegState[PhysReg] = NewState;
433 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
434 unsigned Alias = *AI;
435 switch (unsigned VirtReg = PhysRegState[Alias]) {
436 case regDisabled:
437 break;
438 default:
439 spillVirtReg(MI, VirtReg);
440 // Fall through.
441 case regFree:
442 case regReserved:
443 PhysRegState[Alias] = regDisabled;
444 if (TRI->isSuperRegister(PhysReg, Alias))
445 return;
446 break;
447 }
448 }
449 }
450
451
452 // calcSpillCost - Return the cost of spilling clearing out PhysReg and
453 // aliases so it is free for allocation.
454 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it
455 // can be allocated directly.
456 // Returns spillImpossible when PhysReg or an alias can't be spilled.
calcSpillCost(unsigned PhysReg) const457 unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
458 if (isRegUsedInInstr(PhysReg)) {
459 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
460 return spillImpossible;
461 }
462 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
463 case regDisabled:
464 break;
465 case regFree:
466 return 0;
467 case regReserved:
468 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
469 << PrintReg(PhysReg, TRI) << " is reserved already.\n");
470 return spillImpossible;
471 default: {
472 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
473 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
474 return I->Dirty ? spillDirty : spillClean;
475 }
476 }
477
478 // This is a disabled register, add up cost of aliases.
479 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
480 unsigned Cost = 0;
481 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
482 unsigned Alias = *AI;
483 switch (unsigned VirtReg = PhysRegState[Alias]) {
484 case regDisabled:
485 break;
486 case regFree:
487 ++Cost;
488 break;
489 case regReserved:
490 return spillImpossible;
491 default: {
492 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
493 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
494 Cost += I->Dirty ? spillDirty : spillClean;
495 break;
496 }
497 }
498 }
499 return Cost;
500 }
501
502
503 /// assignVirtToPhysReg - This method updates local state so that we know
504 /// that PhysReg is the proper container for VirtReg now. The physical
505 /// register must not be used for anything else when this is called.
506 ///
assignVirtToPhysReg(LiveReg & LR,unsigned PhysReg)507 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
508 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
509 << PrintReg(PhysReg, TRI) << "\n");
510 PhysRegState[PhysReg] = LR.VirtReg;
511 assert(!LR.PhysReg && "Already assigned a physreg");
512 LR.PhysReg = PhysReg;
513 }
514
515 RAFast::LiveRegMap::iterator
assignVirtToPhysReg(unsigned VirtReg,unsigned PhysReg)516 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
517 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
518 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
519 assignVirtToPhysReg(*LRI, PhysReg);
520 return LRI;
521 }
522
523 /// allocVirtReg - Allocate a physical register for VirtReg.
allocVirtReg(MachineInstr & MI,LiveRegMap::iterator LRI,unsigned Hint)524 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr &MI,
525 LiveRegMap::iterator LRI,
526 unsigned Hint) {
527 const unsigned VirtReg = LRI->VirtReg;
528
529 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
530 "Can only allocate virtual registers");
531
532 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
533
534 // Ignore invalid hints.
535 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
536 !RC->contains(Hint) || !MRI->isAllocatable(Hint)))
537 Hint = 0;
538
539 // Take hint when possible.
540 if (Hint) {
541 // Ignore the hint if we would have to spill a dirty register.
542 unsigned Cost = calcSpillCost(Hint);
543 if (Cost < spillDirty) {
544 if (Cost)
545 definePhysReg(MI, Hint, regFree);
546 // definePhysReg may kill virtual registers and modify LiveVirtRegs.
547 // That invalidates LRI, so run a new lookup for VirtReg.
548 return assignVirtToPhysReg(VirtReg, Hint);
549 }
550 }
551
552 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);
553
554 // First try to find a completely free register.
555 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
556 unsigned PhysReg = *I;
557 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
558 assignVirtToPhysReg(*LRI, PhysReg);
559 return LRI;
560 }
561 }
562
563 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
564 << TRI->getRegClassName(RC) << "\n");
565
566 unsigned BestReg = 0, BestCost = spillImpossible;
567 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
568 unsigned Cost = calcSpillCost(*I);
569 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
570 DEBUG(dbgs() << "\tCost: " << Cost << "\n");
571 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
572 // Cost is 0 when all aliases are already disabled.
573 if (Cost == 0) {
574 assignVirtToPhysReg(*LRI, *I);
575 return LRI;
576 }
577 if (Cost < BestCost)
578 BestReg = *I, BestCost = Cost;
579 }
580
581 if (BestReg) {
582 definePhysReg(MI, BestReg, regFree);
583 // definePhysReg may kill virtual registers and modify LiveVirtRegs.
584 // That invalidates LRI, so run a new lookup for VirtReg.
585 return assignVirtToPhysReg(VirtReg, BestReg);
586 }
587
588 // Nothing we can do. Report an error and keep going with a bad allocation.
589 if (MI.isInlineAsm())
590 MI.emitError("inline assembly requires more registers than available");
591 else
592 MI.emitError("ran out of registers during register allocation");
593 definePhysReg(MI, *AO.begin(), regFree);
594 return assignVirtToPhysReg(VirtReg, *AO.begin());
595 }
596
597 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
defineVirtReg(MachineInstr & MI,unsigned OpNum,unsigned VirtReg,unsigned Hint)598 RAFast::LiveRegMap::iterator RAFast::defineVirtReg(MachineInstr &MI,
599 unsigned OpNum,
600 unsigned VirtReg,
601 unsigned Hint) {
602 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
603 "Not a virtual register");
604 LiveRegMap::iterator LRI;
605 bool New;
606 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
607 if (New) {
608 // If there is no hint, peek at the only use of this register.
609 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
610 MRI->hasOneNonDBGUse(VirtReg)) {
611 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
612 // It's a copy, use the destination register as a hint.
613 if (UseMI.isCopyLike())
614 Hint = UseMI.getOperand(0).getReg();
615 }
616 LRI = allocVirtReg(MI, LRI, Hint);
617 } else if (LRI->LastUse) {
618 // Redefining a live register - kill at the last use, unless it is this
619 // instruction defining VirtReg multiple times.
620 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
621 addKillFlag(*LRI);
622 }
623 assert(LRI->PhysReg && "Register not assigned");
624 LRI->LastUse = &MI;
625 LRI->LastOpNum = OpNum;
626 LRI->Dirty = true;
627 markRegUsedInInstr(LRI->PhysReg);
628 return LRI;
629 }
630
631 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
reloadVirtReg(MachineInstr & MI,unsigned OpNum,unsigned VirtReg,unsigned Hint)632 RAFast::LiveRegMap::iterator RAFast::reloadVirtReg(MachineInstr &MI,
633 unsigned OpNum,
634 unsigned VirtReg,
635 unsigned Hint) {
636 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
637 "Not a virtual register");
638 LiveRegMap::iterator LRI;
639 bool New;
640 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
641 MachineOperand &MO = MI.getOperand(OpNum);
642 if (New) {
643 LRI = allocVirtReg(MI, LRI, Hint);
644 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
645 int FrameIndex = getStackSpaceFor(VirtReg, RC);
646 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
647 << PrintReg(LRI->PhysReg, TRI) << "\n");
648 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
649 ++NumLoads;
650 } else if (LRI->Dirty) {
651 if (isLastUseOfLocalReg(MO)) {
652 DEBUG(dbgs() << "Killing last use: " << MO << "\n");
653 if (MO.isUse())
654 MO.setIsKill();
655 else
656 MO.setIsDead();
657 } else if (MO.isKill()) {
658 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
659 MO.setIsKill(false);
660 } else if (MO.isDead()) {
661 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
662 MO.setIsDead(false);
663 }
664 } else if (MO.isKill()) {
665 // We must remove kill flags from uses of reloaded registers because the
666 // register would be killed immediately, and there might be a second use:
667 // %foo = OR %x<kill>, %x
668 // This would cause a second reload of %x into a different register.
669 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
670 MO.setIsKill(false);
671 } else if (MO.isDead()) {
672 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
673 MO.setIsDead(false);
674 }
675 assert(LRI->PhysReg && "Register not assigned");
676 LRI->LastUse = &MI;
677 LRI->LastOpNum = OpNum;
678 markRegUsedInInstr(LRI->PhysReg);
679 return LRI;
680 }
681
682 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
683 // subregs. This may invalidate any operand pointers.
684 // Return true if the operand kills its register.
setPhysReg(MachineInstr * MI,unsigned OpNum,unsigned PhysReg)685 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
686 MachineOperand &MO = MI->getOperand(OpNum);
687 bool Dead = MO.isDead();
688 if (!MO.getSubReg()) {
689 MO.setReg(PhysReg);
690 return MO.isKill() || Dead;
691 }
692
693 // Handle subregister index.
694 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
695 MO.setSubReg(0);
696
697 // A kill flag implies killing the full register. Add corresponding super
698 // register kill.
699 if (MO.isKill()) {
700 MI->addRegisterKilled(PhysReg, TRI, true);
701 return true;
702 }
703
704 // A <def,read-undef> of a sub-register requires an implicit def of the full
705 // register.
706 if (MO.isDef() && MO.isUndef())
707 MI->addRegisterDefined(PhysReg, TRI);
708
709 return Dead;
710 }
711
712 // Handle special instruction operand like early clobbers and tied ops when
713 // there are additional physreg defines.
handleThroughOperands(MachineInstr * MI,SmallVectorImpl<unsigned> & VirtDead)714 void RAFast::handleThroughOperands(MachineInstr *MI,
715 SmallVectorImpl<unsigned> &VirtDead) {
716 DEBUG(dbgs() << "Scanning for through registers:");
717 SmallSet<unsigned, 8> ThroughRegs;
718 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
719 MachineOperand &MO = MI->getOperand(i);
720 if (!MO.isReg()) continue;
721 unsigned Reg = MO.getReg();
722 if (!TargetRegisterInfo::isVirtualRegister(Reg))
723 continue;
724 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
725 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
726 if (ThroughRegs.insert(Reg).second)
727 DEBUG(dbgs() << ' ' << PrintReg(Reg));
728 }
729 }
730
731 // If any physreg defines collide with preallocated through registers,
732 // we must spill and reallocate.
733 DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
734 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
735 MachineOperand &MO = MI->getOperand(i);
736 if (!MO.isReg() || !MO.isDef()) continue;
737 unsigned Reg = MO.getReg();
738 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
739 markRegUsedInInstr(Reg);
740 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
741 if (ThroughRegs.count(PhysRegState[*AI]))
742 definePhysReg(*MI, *AI, regFree);
743 }
744 }
745
746 SmallVector<unsigned, 8> PartialDefs;
747 DEBUG(dbgs() << "Allocating tied uses.\n");
748 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
749 MachineOperand &MO = MI->getOperand(i);
750 if (!MO.isReg()) continue;
751 unsigned Reg = MO.getReg();
752 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
753 if (MO.isUse()) {
754 unsigned DefIdx = 0;
755 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
756 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
757 << DefIdx << ".\n");
758 LiveRegMap::iterator LRI = reloadVirtReg(*MI, i, Reg, 0);
759 unsigned PhysReg = LRI->PhysReg;
760 setPhysReg(MI, i, PhysReg);
761 // Note: we don't update the def operand yet. That would cause the normal
762 // def-scan to attempt spilling.
763 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
764 DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
765 // Reload the register, but don't assign to the operand just yet.
766 // That would confuse the later phys-def processing pass.
767 LiveRegMap::iterator LRI = reloadVirtReg(*MI, i, Reg, 0);
768 PartialDefs.push_back(LRI->PhysReg);
769 }
770 }
771
772 DEBUG(dbgs() << "Allocating early clobbers.\n");
773 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
774 MachineOperand &MO = MI->getOperand(i);
775 if (!MO.isReg()) continue;
776 unsigned Reg = MO.getReg();
777 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
778 if (!MO.isEarlyClobber())
779 continue;
780 // Note: defineVirtReg may invalidate MO.
781 LiveRegMap::iterator LRI = defineVirtReg(*MI, i, Reg, 0);
782 unsigned PhysReg = LRI->PhysReg;
783 if (setPhysReg(MI, i, PhysReg))
784 VirtDead.push_back(Reg);
785 }
786
787 // Restore UsedInInstr to a state usable for allocating normal virtual uses.
788 UsedInInstr.clear();
789 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
790 MachineOperand &MO = MI->getOperand(i);
791 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
792 unsigned Reg = MO.getReg();
793 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
794 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
795 << " as used in instr\n");
796 markRegUsedInInstr(Reg);
797 }
798
799 // Also mark PartialDefs as used to avoid reallocation.
800 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
801 markRegUsedInInstr(PartialDefs[i]);
802 }
803
AllocateBasicBlock()804 void RAFast::AllocateBasicBlock() {
805 DEBUG(dbgs() << "\nAllocating " << *MBB);
806
807 PhysRegState.assign(TRI->getNumRegs(), regDisabled);
808 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
809
810 MachineBasicBlock::iterator MII = MBB->begin();
811
812 // Add live-in registers as live.
813 for (const auto &LI : MBB->liveins())
814 if (MRI->isAllocatable(LI.PhysReg))
815 definePhysReg(*MII, LI.PhysReg, regReserved);
816
817 SmallVector<unsigned, 8> VirtDead;
818 SmallVector<MachineInstr*, 32> Coalesced;
819
820 // Otherwise, sequentially allocate each instruction in the MBB.
821 while (MII != MBB->end()) {
822 MachineInstr *MI = &*MII++;
823 const MCInstrDesc &MCID = MI->getDesc();
824 DEBUG({
825 dbgs() << "\n>> " << *MI << "Regs:";
826 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
827 if (PhysRegState[Reg] == regDisabled) continue;
828 dbgs() << " " << TRI->getName(Reg);
829 switch(PhysRegState[Reg]) {
830 case regFree:
831 break;
832 case regReserved:
833 dbgs() << "*";
834 break;
835 default: {
836 dbgs() << '=' << PrintReg(PhysRegState[Reg]);
837 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
838 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
839 if (I->Dirty)
840 dbgs() << "*";
841 assert(I->PhysReg == Reg && "Bad inverse map");
842 break;
843 }
844 }
845 }
846 dbgs() << '\n';
847 // Check that LiveVirtRegs is the inverse.
848 for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
849 e = LiveVirtRegs.end(); i != e; ++i) {
850 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
851 "Bad map key");
852 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
853 "Bad map value");
854 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
855 }
856 });
857
858 // Debug values are not allowed to change codegen in any way.
859 if (MI->isDebugValue()) {
860 bool ScanDbgValue = true;
861 while (ScanDbgValue) {
862 ScanDbgValue = false;
863 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
864 MachineOperand &MO = MI->getOperand(i);
865 if (!MO.isReg()) continue;
866 unsigned Reg = MO.getReg();
867 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
868 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
869 if (LRI != LiveVirtRegs.end())
870 setPhysReg(MI, i, LRI->PhysReg);
871 else {
872 int SS = StackSlotForVirtReg[Reg];
873 if (SS == -1) {
874 // We can't allocate a physreg for a DebugValue, sorry!
875 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
876 MO.setReg(0);
877 }
878 else {
879 // Modify DBG_VALUE now that the value is in a spill slot.
880 bool IsIndirect = MI->isIndirectDebugValue();
881 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
882 const MDNode *Var = MI->getDebugVariable();
883 const MDNode *Expr = MI->getDebugExpression();
884 DebugLoc DL = MI->getDebugLoc();
885 MachineBasicBlock *MBB = MI->getParent();
886 assert(
887 cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
888 "Expected inlined-at fields to agree");
889 MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL,
890 TII->get(TargetOpcode::DBG_VALUE))
891 .addFrameIndex(SS)
892 .addImm(Offset)
893 .addMetadata(Var)
894 .addMetadata(Expr);
895 DEBUG(dbgs() << "Modifying debug info due to spill:"
896 << "\t" << *NewDV);
897 // Scan NewDV operands from the beginning.
898 MI = NewDV;
899 ScanDbgValue = true;
900 break;
901 }
902 }
903 LiveDbgValueMap[Reg].push_back(MI);
904 }
905 }
906 // Next instruction.
907 continue;
908 }
909
910 // If this is a copy, we may be able to coalesce.
911 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
912 if (MI->isCopy()) {
913 CopyDst = MI->getOperand(0).getReg();
914 CopySrc = MI->getOperand(1).getReg();
915 CopyDstSub = MI->getOperand(0).getSubReg();
916 CopySrcSub = MI->getOperand(1).getSubReg();
917 }
918
919 // Track registers used by instruction.
920 UsedInInstr.clear();
921
922 // First scan.
923 // Mark physreg uses and early clobbers as used.
924 // Find the end of the virtreg operands
925 unsigned VirtOpEnd = 0;
926 bool hasTiedOps = false;
927 bool hasEarlyClobbers = false;
928 bool hasPartialRedefs = false;
929 bool hasPhysDefs = false;
930 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
931 MachineOperand &MO = MI->getOperand(i);
932 // Make sure MRI knows about registers clobbered by regmasks.
933 if (MO.isRegMask()) {
934 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
935 continue;
936 }
937 if (!MO.isReg()) continue;
938 unsigned Reg = MO.getReg();
939 if (!Reg) continue;
940 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
941 VirtOpEnd = i+1;
942 if (MO.isUse()) {
943 hasTiedOps = hasTiedOps ||
944 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
945 } else {
946 if (MO.isEarlyClobber())
947 hasEarlyClobbers = true;
948 if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
949 hasPartialRedefs = true;
950 }
951 continue;
952 }
953 if (!MRI->isAllocatable(Reg)) continue;
954 if (MO.isUse()) {
955 usePhysReg(MO);
956 } else if (MO.isEarlyClobber()) {
957 definePhysReg(*MI, Reg,
958 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
959 hasEarlyClobbers = true;
960 } else
961 hasPhysDefs = true;
962 }
963
964 // The instruction may have virtual register operands that must be allocated
965 // the same register at use-time and def-time: early clobbers and tied
966 // operands. If there are also physical defs, these registers must avoid
967 // both physical defs and uses, making them more constrained than normal
968 // operands.
969 // Similarly, if there are multiple defs and tied operands, we must make
970 // sure the same register is allocated to uses and defs.
971 // We didn't detect inline asm tied operands above, so just make this extra
972 // pass for all inline asm.
973 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
974 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
975 handleThroughOperands(MI, VirtDead);
976 // Don't attempt coalescing when we have funny stuff going on.
977 CopyDst = 0;
978 // Pretend we have early clobbers so the use operands get marked below.
979 // This is not necessary for the common case of a single tied use.
980 hasEarlyClobbers = true;
981 }
982
983 // Second scan.
984 // Allocate virtreg uses.
985 for (unsigned i = 0; i != VirtOpEnd; ++i) {
986 MachineOperand &MO = MI->getOperand(i);
987 if (!MO.isReg()) continue;
988 unsigned Reg = MO.getReg();
989 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
990 if (MO.isUse()) {
991 LiveRegMap::iterator LRI = reloadVirtReg(*MI, i, Reg, CopyDst);
992 unsigned PhysReg = LRI->PhysReg;
993 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
994 if (setPhysReg(MI, i, PhysReg))
995 killVirtReg(LRI);
996 }
997 }
998
999 // Track registers defined by instruction - early clobbers and tied uses at
1000 // this point.
1001 UsedInInstr.clear();
1002 if (hasEarlyClobbers) {
1003 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1004 MachineOperand &MO = MI->getOperand(i);
1005 if (!MO.isReg()) continue;
1006 unsigned Reg = MO.getReg();
1007 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1008 // Look for physreg defs and tied uses.
1009 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
1010 markRegUsedInInstr(Reg);
1011 }
1012 }
1013
1014 unsigned DefOpEnd = MI->getNumOperands();
1015 if (MI->isCall()) {
1016 // Spill all virtregs before a call. This serves one purpose: If an
1017 // exception is thrown, the landing pad is going to expect to find
1018 // registers in their spill slots.
1019 // Note: although this is appealing to just consider all definitions
1020 // as call-clobbered, this is not correct because some of those
1021 // definitions may be used later on and we do not want to reuse
1022 // those for virtual registers in between.
1023 DEBUG(dbgs() << " Spilling remaining registers before call.\n");
1024 spillAll(MI);
1025
1026 // The imp-defs are skipped below, but we still need to mark those
1027 // registers as used by the function.
1028 SkippedInstrs.insert(&MCID);
1029 }
1030
1031 // Third scan.
1032 // Allocate defs and collect dead defs.
1033 for (unsigned i = 0; i != DefOpEnd; ++i) {
1034 MachineOperand &MO = MI->getOperand(i);
1035 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1036 continue;
1037 unsigned Reg = MO.getReg();
1038
1039 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1040 if (!MRI->isAllocatable(Reg)) continue;
1041 definePhysReg(*MI, Reg, MO.isDead() ? regFree : regReserved);
1042 continue;
1043 }
1044 LiveRegMap::iterator LRI = defineVirtReg(*MI, i, Reg, CopySrc);
1045 unsigned PhysReg = LRI->PhysReg;
1046 if (setPhysReg(MI, i, PhysReg)) {
1047 VirtDead.push_back(Reg);
1048 CopyDst = 0; // cancel coalescing;
1049 } else
1050 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
1051 }
1052
1053 // Kill dead defs after the scan to ensure that multiple defs of the same
1054 // register are allocated identically. We didn't need to do this for uses
1055 // because we are crerating our own kill flags, and they are always at the
1056 // last use.
1057 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
1058 killVirtReg(VirtDead[i]);
1059 VirtDead.clear();
1060
1061 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
1062 DEBUG(dbgs() << "-- coalescing: " << *MI);
1063 Coalesced.push_back(MI);
1064 } else {
1065 DEBUG(dbgs() << "<< " << *MI);
1066 }
1067 }
1068
1069 // Spill all physical registers holding virtual registers now.
1070 DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1071 spillAll(MBB->getFirstTerminator());
1072
1073 // Erase all the coalesced copies. We are delaying it until now because
1074 // LiveVirtRegs might refer to the instrs.
1075 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
1076 MBB->erase(Coalesced[i]);
1077 NumCopies += Coalesced.size();
1078
1079 DEBUG(MBB->dump());
1080 }
1081
1082 /// runOnMachineFunction - Register allocate the whole function
1083 ///
runOnMachineFunction(MachineFunction & Fn)1084 bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1085 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1086 << "********** Function: " << Fn.getName() << '\n');
1087 MF = &Fn;
1088 MRI = &MF->getRegInfo();
1089 TRI = MF->getSubtarget().getRegisterInfo();
1090 TII = MF->getSubtarget().getInstrInfo();
1091 MRI->freezeReservedRegs(Fn);
1092 RegClassInfo.runOnMachineFunction(Fn);
1093 UsedInInstr.clear();
1094 UsedInInstr.setUniverse(TRI->getNumRegUnits());
1095
1096 assert(!MRI->isSSA() && "regalloc requires leaving SSA");
1097
1098 // initialize the virtual->physical register map to have a 'null'
1099 // mapping for all virtual registers
1100 StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
1101 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
1102
1103 // Loop over all of the basic blocks, eliminating virtual register references
1104 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1105 MBBi != MBBe; ++MBBi) {
1106 MBB = &*MBBi;
1107 AllocateBasicBlock();
1108 }
1109
1110 // All machine operands and other references to virtual registers have been
1111 // replaced. Remove the virtual registers.
1112 MRI->clearVirtRegs();
1113
1114 SkippedInstrs.clear();
1115 StackSlotForVirtReg.clear();
1116 LiveDbgValueMap.clear();
1117 return true;
1118 }
1119
createFastRegisterAllocator()1120 FunctionPass *llvm::createFastRegisterAllocator() {
1121 return new RAFast();
1122 }
1123