• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a crude C++11 based thread pool.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Support/ThreadPool.h"
15 
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/Support/raw_ostream.h"
18 
19 using namespace llvm;
20 
21 #if LLVM_ENABLE_THREADS
22 
23 // Default to std::thread::hardware_concurrency
ThreadPool()24 ThreadPool::ThreadPool() : ThreadPool(std::thread::hardware_concurrency()) {}
25 
ThreadPool(unsigned ThreadCount)26 ThreadPool::ThreadPool(unsigned ThreadCount)
27     : ActiveThreads(0), EnableFlag(true) {
28   // Create ThreadCount threads that will loop forever, wait on QueueCondition
29   // for tasks to be queued or the Pool to be destroyed.
30   Threads.reserve(ThreadCount);
31   for (unsigned ThreadID = 0; ThreadID < ThreadCount; ++ThreadID) {
32     Threads.emplace_back([&] {
33       while (true) {
34         PackagedTaskTy Task;
35         {
36           std::unique_lock<std::mutex> LockGuard(QueueLock);
37           // Wait for tasks to be pushed in the queue
38           QueueCondition.wait(LockGuard,
39                               [&] { return !EnableFlag || !Tasks.empty(); });
40           // Exit condition
41           if (!EnableFlag && Tasks.empty())
42             return;
43           // Yeah, we have a task, grab it and release the lock on the queue
44 
45           // We first need to signal that we are active before popping the queue
46           // in order for wait() to properly detect that even if the queue is
47           // empty, there is still a task in flight.
48           {
49             ++ActiveThreads;
50             std::unique_lock<std::mutex> LockGuard(CompletionLock);
51           }
52           Task = std::move(Tasks.front());
53           Tasks.pop();
54         }
55         // Run the task we just grabbed
56 #ifndef _MSC_VER
57         Task();
58 #else
59         Task(/* unused */ false);
60 #endif
61 
62         {
63           // Adjust `ActiveThreads`, in case someone waits on ThreadPool::wait()
64           std::unique_lock<std::mutex> LockGuard(CompletionLock);
65           --ActiveThreads;
66         }
67 
68         // Notify task completion, in case someone waits on ThreadPool::wait()
69         CompletionCondition.notify_all();
70       }
71     });
72   }
73 }
74 
wait()75 void ThreadPool::wait() {
76   // Wait for all threads to complete and the queue to be empty
77   std::unique_lock<std::mutex> LockGuard(CompletionLock);
78   // The order of the checks for ActiveThreads and Tasks.empty() matters because
79   // any active threads might be modifying the Tasks queue, and this would be a
80   // race.
81   CompletionCondition.wait(LockGuard,
82                            [&] { return !ActiveThreads && Tasks.empty(); });
83 }
84 
asyncImpl(TaskTy Task)85 std::shared_future<ThreadPool::VoidTy> ThreadPool::asyncImpl(TaskTy Task) {
86   /// Wrap the Task in a packaged_task to return a future object.
87   PackagedTaskTy PackagedTask(std::move(Task));
88   auto Future = PackagedTask.get_future();
89   {
90     // Lock the queue and push the new task
91     std::unique_lock<std::mutex> LockGuard(QueueLock);
92 
93     // Don't allow enqueueing after disabling the pool
94     assert(EnableFlag && "Queuing a thread during ThreadPool destruction");
95 
96     Tasks.push(std::move(PackagedTask));
97   }
98   QueueCondition.notify_one();
99   return Future.share();
100 }
101 
102 // The destructor joins all threads, waiting for completion.
~ThreadPool()103 ThreadPool::~ThreadPool() {
104   {
105     std::unique_lock<std::mutex> LockGuard(QueueLock);
106     EnableFlag = false;
107   }
108   QueueCondition.notify_all();
109   for (auto &Worker : Threads)
110     Worker.join();
111 }
112 
113 #else // LLVM_ENABLE_THREADS Disabled
114 
ThreadPool()115 ThreadPool::ThreadPool() : ThreadPool(0) {}
116 
117 // No threads are launched, issue a warning if ThreadCount is not 0
ThreadPool(unsigned ThreadCount)118 ThreadPool::ThreadPool(unsigned ThreadCount)
119     : ActiveThreads(0) {
120   if (ThreadCount) {
121     errs() << "Warning: request a ThreadPool with " << ThreadCount
122            << " threads, but LLVM_ENABLE_THREADS has been turned off\n";
123   }
124 }
125 
wait()126 void ThreadPool::wait() {
127   // Sequential implementation running the tasks
128   while (!Tasks.empty()) {
129     auto Task = std::move(Tasks.front());
130     Tasks.pop();
131 #ifndef _MSC_VER
132         Task();
133 #else
134         Task(/* unused */ false);
135 #endif
136   }
137 }
138 
asyncImpl(TaskTy Task)139 std::shared_future<ThreadPool::VoidTy> ThreadPool::asyncImpl(TaskTy Task) {
140 #ifndef _MSC_VER
141   // Get a Future with launch::deferred execution using std::async
142   auto Future = std::async(std::launch::deferred, std::move(Task)).share();
143   // Wrap the future so that both ThreadPool::wait() can operate and the
144   // returned future can be sync'ed on.
145   PackagedTaskTy PackagedTask([Future]() { Future.get(); });
146 #else
147   auto Future = std::async(std::launch::deferred, std::move(Task), false).share();
148   PackagedTaskTy PackagedTask([Future](bool) -> bool { Future.get(); return false; });
149 #endif
150   Tasks.push(std::move(PackagedTask));
151   return Future;
152 }
153 
~ThreadPool()154 ThreadPool::~ThreadPool() {
155   wait();
156 }
157 
158 #endif
159