• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "AArch64.h"
11 #include "AArch64RegisterInfo.h"
12 #include "MCTargetDesc/AArch64FixupKinds.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCContext.h"
16 #include "llvm/MC/MCDirectives.h"
17 #include "llvm/MC/MCELFObjectWriter.h"
18 #include "llvm/MC/MCFixupKindInfo.h"
19 #include "llvm/MC/MCObjectWriter.h"
20 #include "llvm/MC/MCSectionELF.h"
21 #include "llvm/MC/MCSectionMachO.h"
22 #include "llvm/MC/MCValue.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/MachO.h"
25 using namespace llvm;
26 
27 namespace {
28 
29 class AArch64AsmBackend : public MCAsmBackend {
30   static const unsigned PCRelFlagVal =
31       MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
32 public:
33   bool IsLittleEndian;
34 
35 public:
AArch64AsmBackend(const Target & T,bool IsLittleEndian)36   AArch64AsmBackend(const Target &T, bool IsLittleEndian)
37      : MCAsmBackend(), IsLittleEndian(IsLittleEndian) {}
38 
getNumFixupKinds() const39   unsigned getNumFixupKinds() const override {
40     return AArch64::NumTargetFixupKinds;
41   }
42 
getFixupKindInfo(MCFixupKind Kind) const43   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
44     const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
45       // This table *must* be in the order that the fixup_* kinds are defined in
46       // AArch64FixupKinds.h.
47       //
48       // Name                           Offset (bits) Size (bits)     Flags
49       { "fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal },
50       { "fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal },
51       { "fixup_aarch64_add_imm12", 10, 12, 0 },
52       { "fixup_aarch64_ldst_imm12_scale1", 10, 12, 0 },
53       { "fixup_aarch64_ldst_imm12_scale2", 10, 12, 0 },
54       { "fixup_aarch64_ldst_imm12_scale4", 10, 12, 0 },
55       { "fixup_aarch64_ldst_imm12_scale8", 10, 12, 0 },
56       { "fixup_aarch64_ldst_imm12_scale16", 10, 12, 0 },
57       { "fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal },
58       { "fixup_aarch64_movw", 5, 16, 0 },
59       { "fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal },
60       { "fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal },
61       { "fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal },
62       { "fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal },
63       { "fixup_aarch64_tlsdesc_call", 0, 0, 0 }
64     };
65 
66     if (Kind < FirstTargetFixupKind)
67       return MCAsmBackend::getFixupKindInfo(Kind);
68 
69     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
70            "Invalid kind!");
71     return Infos[Kind - FirstTargetFixupKind];
72   }
73 
74   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
75                   uint64_t Value, bool IsPCRel) const override;
76 
77   bool mayNeedRelaxation(const MCInst &Inst) const override;
78   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
79                             const MCRelaxableFragment *DF,
80                             const MCAsmLayout &Layout) const override;
81   void relaxInstruction(const MCInst &Inst, const MCSubtargetInfo &STI,
82                         MCInst &Res) const override;
83   bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
84 
HandleAssemblerFlag(MCAssemblerFlag Flag)85   void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
86 
getPointerSize() const87   unsigned getPointerSize() const { return 8; }
88 
89   unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const;
90 };
91 
92 } // end anonymous namespace
93 
94 /// \brief The number of bytes the fixup may change.
getFixupKindNumBytes(unsigned Kind)95 static unsigned getFixupKindNumBytes(unsigned Kind) {
96   switch (Kind) {
97   default:
98     llvm_unreachable("Unknown fixup kind!");
99 
100   case AArch64::fixup_aarch64_tlsdesc_call:
101     return 0;
102 
103   case FK_Data_1:
104     return 1;
105 
106   case FK_Data_2:
107   case AArch64::fixup_aarch64_movw:
108     return 2;
109 
110   case AArch64::fixup_aarch64_pcrel_branch14:
111   case AArch64::fixup_aarch64_add_imm12:
112   case AArch64::fixup_aarch64_ldst_imm12_scale1:
113   case AArch64::fixup_aarch64_ldst_imm12_scale2:
114   case AArch64::fixup_aarch64_ldst_imm12_scale4:
115   case AArch64::fixup_aarch64_ldst_imm12_scale8:
116   case AArch64::fixup_aarch64_ldst_imm12_scale16:
117   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
118   case AArch64::fixup_aarch64_pcrel_branch19:
119     return 3;
120 
121   case AArch64::fixup_aarch64_pcrel_adr_imm21:
122   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
123   case AArch64::fixup_aarch64_pcrel_branch26:
124   case AArch64::fixup_aarch64_pcrel_call26:
125   case FK_Data_4:
126     return 4;
127 
128   case FK_Data_8:
129     return 8;
130   }
131 }
132 
AdrImmBits(unsigned Value)133 static unsigned AdrImmBits(unsigned Value) {
134   unsigned lo2 = Value & 0x3;
135   unsigned hi19 = (Value & 0x1ffffc) >> 2;
136   return (hi19 << 5) | (lo2 << 29);
137 }
138 
adjustFixupValue(const MCFixup & Fixup,uint64_t Value,MCContext * Ctx)139 static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
140                                  MCContext *Ctx) {
141   unsigned Kind = Fixup.getKind();
142   int64_t SignedValue = static_cast<int64_t>(Value);
143   switch (Kind) {
144   default:
145     llvm_unreachable("Unknown fixup kind!");
146   case AArch64::fixup_aarch64_pcrel_adr_imm21:
147     if (Ctx && (SignedValue > 2097151 || SignedValue < -2097152))
148       Ctx->reportError(Fixup.getLoc(), "fixup value out of range");
149     return AdrImmBits(Value & 0x1fffffULL);
150   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
151     return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
152   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
153   case AArch64::fixup_aarch64_pcrel_branch19:
154     // Signed 21-bit immediate
155     if (SignedValue > 2097151 || SignedValue < -2097152)
156       if (Ctx) Ctx->reportError(Fixup.getLoc(), "fixup value out of range");
157     if (Ctx && (Value & 0x3))
158       Ctx->reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
159     // Low two bits are not encoded.
160     return (Value >> 2) & 0x7ffff;
161   case AArch64::fixup_aarch64_add_imm12:
162   case AArch64::fixup_aarch64_ldst_imm12_scale1:
163     // Unsigned 12-bit immediate
164     if (Ctx && Value >= 0x1000)
165       Ctx->reportError(Fixup.getLoc(), "fixup value out of range");
166     return Value;
167   case AArch64::fixup_aarch64_ldst_imm12_scale2:
168     // Unsigned 12-bit immediate which gets multiplied by 2
169     if (Ctx && (Value >= 0x2000))
170       Ctx->reportError(Fixup.getLoc(), "fixup value out of range");
171     if (Ctx && (Value & 0x1))
172       Ctx->reportError(Fixup.getLoc(), "fixup must be 2-byte aligned");
173     return Value >> 1;
174   case AArch64::fixup_aarch64_ldst_imm12_scale4:
175     // Unsigned 12-bit immediate which gets multiplied by 4
176     if (Ctx && (Value >= 0x4000))
177       Ctx->reportError(Fixup.getLoc(), "fixup value out of range");
178     if (Ctx && (Value & 0x3))
179       Ctx->reportError(Fixup.getLoc(), "fixup must be 4-byte aligned");
180     return Value >> 2;
181   case AArch64::fixup_aarch64_ldst_imm12_scale8:
182     // Unsigned 12-bit immediate which gets multiplied by 8
183     if (Ctx && (Value >= 0x8000))
184       Ctx->reportError(Fixup.getLoc(), "fixup value out of range");
185     if (Ctx && (Value & 0x7))
186       Ctx->reportError(Fixup.getLoc(), "fixup must be 8-byte aligned");
187     return Value >> 3;
188   case AArch64::fixup_aarch64_ldst_imm12_scale16:
189     // Unsigned 12-bit immediate which gets multiplied by 16
190     if (Ctx && (Value >= 0x10000))
191       Ctx->reportError(Fixup.getLoc(), "fixup value out of range");
192     if (Ctx && (Value & 0xf))
193       Ctx->reportError(Fixup.getLoc(), "fixup must be 16-byte aligned");
194     return Value >> 4;
195   case AArch64::fixup_aarch64_movw:
196     if (Ctx)
197       Ctx->reportError(Fixup.getLoc(),
198                        "no resolvable MOVZ/MOVK fixups supported yet");
199     return Value;
200   case AArch64::fixup_aarch64_pcrel_branch14:
201     // Signed 16-bit immediate
202     if (Ctx && (SignedValue > 32767 || SignedValue < -32768))
203       Ctx->reportError(Fixup.getLoc(), "fixup value out of range");
204     // Low two bits are not encoded (4-byte alignment assumed).
205     if (Ctx && (Value & 0x3))
206       Ctx->reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
207     return (Value >> 2) & 0x3fff;
208   case AArch64::fixup_aarch64_pcrel_branch26:
209   case AArch64::fixup_aarch64_pcrel_call26:
210     // Signed 28-bit immediate
211     if (Ctx && (SignedValue > 134217727 || SignedValue < -134217728))
212       Ctx->reportError(Fixup.getLoc(), "fixup value out of range");
213     // Low two bits are not encoded (4-byte alignment assumed).
214     if (Ctx && (Value & 0x3))
215       Ctx->reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
216     return (Value >> 2) & 0x3ffffff;
217   case FK_Data_1:
218   case FK_Data_2:
219   case FK_Data_4:
220   case FK_Data_8:
221     return Value;
222   }
223 }
224 
225 /// getFixupKindContainereSizeInBytes - The number of bytes of the
226 /// container involved in big endian or 0 if the item is little endian
getFixupKindContainereSizeInBytes(unsigned Kind) const227 unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const {
228   if (IsLittleEndian)
229     return 0;
230 
231   switch (Kind) {
232   default:
233     llvm_unreachable("Unknown fixup kind!");
234 
235   case FK_Data_1:
236     return 1;
237   case FK_Data_2:
238     return 2;
239   case FK_Data_4:
240     return 4;
241   case FK_Data_8:
242     return 8;
243 
244   case AArch64::fixup_aarch64_tlsdesc_call:
245   case AArch64::fixup_aarch64_movw:
246   case AArch64::fixup_aarch64_pcrel_branch14:
247   case AArch64::fixup_aarch64_add_imm12:
248   case AArch64::fixup_aarch64_ldst_imm12_scale1:
249   case AArch64::fixup_aarch64_ldst_imm12_scale2:
250   case AArch64::fixup_aarch64_ldst_imm12_scale4:
251   case AArch64::fixup_aarch64_ldst_imm12_scale8:
252   case AArch64::fixup_aarch64_ldst_imm12_scale16:
253   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
254   case AArch64::fixup_aarch64_pcrel_branch19:
255   case AArch64::fixup_aarch64_pcrel_adr_imm21:
256   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
257   case AArch64::fixup_aarch64_pcrel_branch26:
258   case AArch64::fixup_aarch64_pcrel_call26:
259     // Instructions are always little endian
260     return 0;
261   }
262 }
263 
applyFixup(const MCFixup & Fixup,char * Data,unsigned DataSize,uint64_t Value,bool IsPCRel) const264 void AArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
265                                    unsigned DataSize, uint64_t Value,
266                                    bool IsPCRel) const {
267   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
268   if (!Value)
269     return; // Doesn't change encoding.
270   MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
271   // Apply any target-specific value adjustments.
272   Value = adjustFixupValue(Fixup, Value, nullptr);
273 
274   // Shift the value into position.
275   Value <<= Info.TargetOffset;
276 
277   unsigned Offset = Fixup.getOffset();
278   assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
279 
280   // Used to point to big endian bytes.
281   unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind());
282 
283   // For each byte of the fragment that the fixup touches, mask in the
284   // bits from the fixup value.
285   if (FulleSizeInBytes == 0) {
286     // Handle as little-endian
287     for (unsigned i = 0; i != NumBytes; ++i) {
288       Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
289     }
290   } else {
291     // Handle as big-endian
292     assert((Offset + FulleSizeInBytes) <= DataSize && "Invalid fixup size!");
293     assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!");
294     for (unsigned i = 0; i != NumBytes; ++i) {
295       unsigned Idx = FulleSizeInBytes - 1 - i;
296       Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
297     }
298   }
299 }
300 
mayNeedRelaxation(const MCInst & Inst) const301 bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
302   return false;
303 }
304 
fixupNeedsRelaxation(const MCFixup & Fixup,uint64_t Value,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const305 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
306                                              uint64_t Value,
307                                              const MCRelaxableFragment *DF,
308                                              const MCAsmLayout &Layout) const {
309   // FIXME:  This isn't correct for AArch64. Just moving the "generic" logic
310   // into the targets for now.
311   //
312   // Relax if the value is too big for a (signed) i8.
313   return int64_t(Value) != int64_t(int8_t(Value));
314 }
315 
relaxInstruction(const MCInst & Inst,const MCSubtargetInfo & STI,MCInst & Res) const316 void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
317                                          const MCSubtargetInfo &STI,
318                                          MCInst &Res) const {
319   llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
320 }
321 
writeNopData(uint64_t Count,MCObjectWriter * OW) const322 bool AArch64AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
323   // If the count is not 4-byte aligned, we must be writing data into the text
324   // section (otherwise we have unaligned instructions, and thus have far
325   // bigger problems), so just write zeros instead.
326   OW->WriteZeros(Count % 4);
327 
328   // We are properly aligned, so write NOPs as requested.
329   Count /= 4;
330   for (uint64_t i = 0; i != Count; ++i)
331     OW->write32(0xd503201f);
332   return true;
333 }
334 
335 namespace {
336 
337 namespace CU {
338 
339 /// \brief Compact unwind encoding values.
340 enum CompactUnwindEncodings {
341   /// \brief A "frameless" leaf function, where no non-volatile registers are
342   /// saved. The return remains in LR throughout the function.
343   UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
344 
345   /// \brief No compact unwind encoding available. Instead the low 23-bits of
346   /// the compact unwind encoding is the offset of the DWARF FDE in the
347   /// __eh_frame section. This mode is never used in object files. It is only
348   /// generated by the linker in final linked images, which have only DWARF info
349   /// for a function.
350   UNWIND_ARM64_MODE_DWARF = 0x03000000,
351 
352   /// \brief This is a standard arm64 prologue where FP/LR are immediately
353   /// pushed on the stack, then SP is copied to FP. If there are any
354   /// non-volatile register saved, they are copied into the stack fame in pairs
355   /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
356   /// five X pairs and four D pairs can be saved, but the memory layout must be
357   /// in register number order.
358   UNWIND_ARM64_MODE_FRAME = 0x04000000,
359 
360   /// \brief Frame register pair encodings.
361   UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
362   UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
363   UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
364   UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
365   UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
366   UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
367   UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
368   UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
369   UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800
370 };
371 
372 } // end CU namespace
373 
374 // FIXME: This should be in a separate file.
375 class DarwinAArch64AsmBackend : public AArch64AsmBackend {
376   const MCRegisterInfo &MRI;
377 
378   /// \brief Encode compact unwind stack adjustment for frameless functions.
379   /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
380   /// The stack size always needs to be 16 byte aligned.
encodeStackAdjustment(uint32_t StackSize) const381   uint32_t encodeStackAdjustment(uint32_t StackSize) const {
382     return (StackSize / 16) << 12;
383   }
384 
385 public:
DarwinAArch64AsmBackend(const Target & T,const MCRegisterInfo & MRI)386   DarwinAArch64AsmBackend(const Target &T, const MCRegisterInfo &MRI)
387       : AArch64AsmBackend(T, /*IsLittleEndian*/true), MRI(MRI) {}
388 
createObjectWriter(raw_pwrite_stream & OS) const389   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
390     return createAArch64MachObjectWriter(OS, MachO::CPU_TYPE_ARM64,
391                                          MachO::CPU_SUBTYPE_ARM64_ALL);
392   }
393 
394   /// \brief Generate the compact unwind encoding from the CFI directives.
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const395   uint32_t generateCompactUnwindEncoding(
396                              ArrayRef<MCCFIInstruction> Instrs) const override {
397     if (Instrs.empty())
398       return CU::UNWIND_ARM64_MODE_FRAMELESS;
399 
400     bool HasFP = false;
401     unsigned StackSize = 0;
402 
403     uint32_t CompactUnwindEncoding = 0;
404     for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
405       const MCCFIInstruction &Inst = Instrs[i];
406 
407       switch (Inst.getOperation()) {
408       default:
409         // Cannot handle this directive:  bail out.
410         return CU::UNWIND_ARM64_MODE_DWARF;
411       case MCCFIInstruction::OpDefCfa: {
412         // Defines a frame pointer.
413         assert(getXRegFromWReg(MRI.getLLVMRegNum(Inst.getRegister(), true)) ==
414                    AArch64::FP &&
415                "Invalid frame pointer!");
416         assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
417 
418         const MCCFIInstruction &LRPush = Instrs[++i];
419         assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
420                "Link register not pushed!");
421         const MCCFIInstruction &FPPush = Instrs[++i];
422         assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
423                "Frame pointer not pushed!");
424 
425         unsigned LRReg = MRI.getLLVMRegNum(LRPush.getRegister(), true);
426         unsigned FPReg = MRI.getLLVMRegNum(FPPush.getRegister(), true);
427 
428         LRReg = getXRegFromWReg(LRReg);
429         FPReg = getXRegFromWReg(FPReg);
430 
431         assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
432                "Pushing invalid registers for frame!");
433 
434         // Indicate that the function has a frame.
435         CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME;
436         HasFP = true;
437         break;
438       }
439       case MCCFIInstruction::OpDefCfaOffset: {
440         assert(StackSize == 0 && "We already have the CFA offset!");
441         StackSize = std::abs(Inst.getOffset());
442         break;
443       }
444       case MCCFIInstruction::OpOffset: {
445         // Registers are saved in pairs. We expect there to be two consecutive
446         // `.cfi_offset' instructions with the appropriate registers specified.
447         unsigned Reg1 = MRI.getLLVMRegNum(Inst.getRegister(), true);
448         if (i + 1 == e)
449           return CU::UNWIND_ARM64_MODE_DWARF;
450 
451         const MCCFIInstruction &Inst2 = Instrs[++i];
452         if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
453           return CU::UNWIND_ARM64_MODE_DWARF;
454         unsigned Reg2 = MRI.getLLVMRegNum(Inst2.getRegister(), true);
455 
456         // N.B. The encodings must be in register number order, and the X
457         // registers before the D registers.
458 
459         // X19/X20 pair = 0x00000001,
460         // X21/X22 pair = 0x00000002,
461         // X23/X24 pair = 0x00000004,
462         // X25/X26 pair = 0x00000008,
463         // X27/X28 pair = 0x00000010
464         Reg1 = getXRegFromWReg(Reg1);
465         Reg2 = getXRegFromWReg(Reg2);
466 
467         if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
468             (CompactUnwindEncoding & 0xF1E) == 0)
469           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR;
470         else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
471                  (CompactUnwindEncoding & 0xF1C) == 0)
472           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR;
473         else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
474                  (CompactUnwindEncoding & 0xF18) == 0)
475           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR;
476         else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
477                  (CompactUnwindEncoding & 0xF10) == 0)
478           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR;
479         else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
480                  (CompactUnwindEncoding & 0xF00) == 0)
481           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR;
482         else {
483           Reg1 = getDRegFromBReg(Reg1);
484           Reg2 = getDRegFromBReg(Reg2);
485 
486           // D8/D9 pair   = 0x00000100,
487           // D10/D11 pair = 0x00000200,
488           // D12/D13 pair = 0x00000400,
489           // D14/D15 pair = 0x00000800
490           if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
491               (CompactUnwindEncoding & 0xE00) == 0)
492             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR;
493           else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
494                    (CompactUnwindEncoding & 0xC00) == 0)
495             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR;
496           else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
497                    (CompactUnwindEncoding & 0x800) == 0)
498             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR;
499           else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
500             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR;
501           else
502             // A pair was pushed which we cannot handle.
503             return CU::UNWIND_ARM64_MODE_DWARF;
504         }
505 
506         break;
507       }
508       }
509     }
510 
511     if (!HasFP) {
512       // With compact unwind info we can only represent stack adjustments of up
513       // to 65520 bytes.
514       if (StackSize > 65520)
515         return CU::UNWIND_ARM64_MODE_DWARF;
516 
517       CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS;
518       CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
519     }
520 
521     return CompactUnwindEncoding;
522   }
523 };
524 
525 } // end anonymous namespace
526 
527 namespace {
528 
529 class ELFAArch64AsmBackend : public AArch64AsmBackend {
530 public:
531   uint8_t OSABI;
532 
ELFAArch64AsmBackend(const Target & T,uint8_t OSABI,bool IsLittleEndian)533   ELFAArch64AsmBackend(const Target &T, uint8_t OSABI, bool IsLittleEndian)
534     : AArch64AsmBackend(T, IsLittleEndian), OSABI(OSABI) {}
535 
createObjectWriter(raw_pwrite_stream & OS) const536   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
537     return createAArch64ELFObjectWriter(OS, OSABI, IsLittleEndian);
538   }
539 
540   void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
541                          const MCFixup &Fixup, const MCFragment *DF,
542                          const MCValue &Target, uint64_t &Value,
543                          bool &IsResolved) override;
544 };
545 
processFixupValue(const MCAssembler & Asm,const MCAsmLayout & Layout,const MCFixup & Fixup,const MCFragment * DF,const MCValue & Target,uint64_t & Value,bool & IsResolved)546 void ELFAArch64AsmBackend::processFixupValue(
547     const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFixup &Fixup,
548     const MCFragment *DF, const MCValue &Target, uint64_t &Value,
549     bool &IsResolved) {
550   // The ADRP instruction adds some multiple of 0x1000 to the current PC &
551   // ~0xfff. This means that the required offset to reach a symbol can vary by
552   // up to one step depending on where the ADRP is in memory. For example:
553   //
554   //     ADRP x0, there
555   //  there:
556   //
557   // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
558   // we'll need that as an offset. At any other address "there" will be in the
559   // same page as the ADRP and the instruction should encode 0x0. Assuming the
560   // section isn't 0x1000-aligned, we therefore need to delegate this decision
561   // to the linker -- a relocation!
562   if ((uint32_t)Fixup.getKind() == AArch64::fixup_aarch64_pcrel_adrp_imm21)
563     IsResolved = false;
564 
565   // Try to get the encoded value for the fixup as-if we're mapping it into
566   // the instruction. This allows adjustFixupValue() to issue a diagnostic
567   // if the value is invalid.
568   if (IsResolved)
569     (void)adjustFixupValue(Fixup, Value, &Asm.getContext());
570 }
571 
572 }
573 
createAArch64leAsmBackend(const Target & T,const MCRegisterInfo & MRI,const Triple & TheTriple,StringRef CPU)574 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
575                                               const MCRegisterInfo &MRI,
576                                               const Triple &TheTriple,
577                                               StringRef CPU) {
578   if (TheTriple.isOSBinFormatMachO())
579     return new DarwinAArch64AsmBackend(T, MRI);
580 
581   assert(TheTriple.isOSBinFormatELF() && "Expect either MachO or ELF target");
582   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
583   return new ELFAArch64AsmBackend(T, OSABI, /*IsLittleEndian=*/true);
584 }
585 
createAArch64beAsmBackend(const Target & T,const MCRegisterInfo & MRI,const Triple & TheTriple,StringRef CPU)586 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
587                                               const MCRegisterInfo &MRI,
588                                               const Triple &TheTriple,
589                                               StringRef CPU) {
590   assert(TheTriple.isOSBinFormatELF() &&
591          "Big endian is only supported for ELF targets!");
592   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
593   return new ELFAArch64AsmBackend(T, OSABI,
594                                   /*IsLittleEndian=*/false);
595 }
596