• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- HexagonBranchRelaxation.cpp - Identify and relax long jumps ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "hexagon-brelax"
11 
12 #include "Hexagon.h"
13 #include "HexagonInstrInfo.h"
14 #include "HexagonSubtarget.h"
15 #include "HexagonTargetMachine.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/PassSupport.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 
25 using namespace llvm;
26 
27 // Since we have no exact knowledge of code layout, allow some safety buffer
28 // for jump target. This is measured in bytes.
29 static cl::opt<uint32_t> BranchRelaxSafetyBuffer("branch-relax-safety-buffer",
30   cl::init(200), cl::Hidden, cl::ZeroOrMore, cl::desc("safety buffer size"));
31 
32 namespace llvm {
33   FunctionPass *createHexagonBranchRelaxation();
34   void initializeHexagonBranchRelaxationPass(PassRegistry&);
35 }
36 
37 namespace {
38   struct HexagonBranchRelaxation : public MachineFunctionPass {
39   public:
40     static char ID;
HexagonBranchRelaxation__anonc2641b9b0111::HexagonBranchRelaxation41     HexagonBranchRelaxation() : MachineFunctionPass(ID) {
42       initializeHexagonBranchRelaxationPass(*PassRegistry::getPassRegistry());
43     }
44 
45     bool runOnMachineFunction(MachineFunction &MF) override;
46 
getPassName__anonc2641b9b0111::HexagonBranchRelaxation47     const char *getPassName() const override {
48       return "Hexagon Branch Relaxation";
49     }
50 
getAnalysisUsage__anonc2641b9b0111::HexagonBranchRelaxation51     void getAnalysisUsage(AnalysisUsage &AU) const override {
52       AU.setPreservesCFG();
53       MachineFunctionPass::getAnalysisUsage(AU);
54     }
55 
56   private:
57     const HexagonInstrInfo *HII;
58     const HexagonRegisterInfo *HRI;
59 
60     bool relaxBranches(MachineFunction &MF);
61     void computeOffset(MachineFunction &MF,
62           DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
63     bool reGenerateBranch(MachineFunction &MF,
64           DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
65     bool isJumpOutOfRange(MachineInstr &MI,
66           DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
67   };
68 
69   char HexagonBranchRelaxation::ID = 0;
70 } // end anonymous namespace
71 
72 INITIALIZE_PASS(HexagonBranchRelaxation, "hexagon-brelax",
73                 "Hexagon Branch Relaxation", false, false)
74 
createHexagonBranchRelaxation()75 FunctionPass *llvm::createHexagonBranchRelaxation() {
76   return new HexagonBranchRelaxation();
77 }
78 
79 
runOnMachineFunction(MachineFunction & MF)80 bool HexagonBranchRelaxation::runOnMachineFunction(MachineFunction &MF) {
81   DEBUG(dbgs() << "****** Hexagon Branch Relaxation ******\n");
82 
83   auto &HST = MF.getSubtarget<HexagonSubtarget>();
84   HII = HST.getInstrInfo();
85   HRI = HST.getRegisterInfo();
86 
87   bool Changed = false;
88   Changed = relaxBranches(MF);
89   return Changed;
90 }
91 
92 
computeOffset(MachineFunction & MF,DenseMap<MachineBasicBlock *,unsigned> & OffsetMap)93 void HexagonBranchRelaxation::computeOffset(MachineFunction &MF,
94       DenseMap<MachineBasicBlock*, unsigned> &OffsetMap) {
95   // offset of the current instruction from the start.
96   unsigned InstOffset = 0;
97   for (auto &B : MF) {
98     if (B.getAlignment()) {
99       // Although we don't know the exact layout of the final code, we need
100       // to account for alignment padding somehow. This heuristic pads each
101       // aligned basic block according to the alignment value.
102       int ByteAlign = (1u << B.getAlignment()) - 1;
103       InstOffset = (InstOffset + ByteAlign) & ~(ByteAlign);
104     }
105     OffsetMap[&B] = InstOffset;
106     for (auto &MI : B.instrs())
107       InstOffset += HII->getSize(&MI);
108   }
109 }
110 
111 
112 /// relaxBranches - For Hexagon, if the jump target/loop label is too far from
113 /// the jump/loop instruction then, we need to make sure that we have constant
114 /// extenders set for jumps and loops.
115 
116 /// There are six iterations in this phase. It's self explanatory below.
relaxBranches(MachineFunction & MF)117 bool HexagonBranchRelaxation::relaxBranches(MachineFunction &MF) {
118   // Compute the offset of each basic block
119   // offset of the current instruction from the start.
120   // map for each instruction to the beginning of the function
121   DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
122   computeOffset(MF, BlockToInstOffset);
123 
124   return reGenerateBranch(MF, BlockToInstOffset);
125 }
126 
127 
128 /// Check if a given instruction is:
129 /// - a jump to a distant target
130 /// - that exceeds its immediate range
131 /// If both conditions are true, it requires constant extension.
isJumpOutOfRange(MachineInstr & MI,DenseMap<MachineBasicBlock *,unsigned> & BlockToInstOffset)132 bool HexagonBranchRelaxation::isJumpOutOfRange(MachineInstr &MI,
133       DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset) {
134   MachineBasicBlock &B = *MI.getParent();
135   auto FirstTerm = B.getFirstInstrTerminator();
136   if (FirstTerm == B.instr_end())
137     return false;
138 
139   unsigned InstOffset = BlockToInstOffset[&B];
140   unsigned Distance = 0;
141 
142   // To save time, estimate exact position of a branch instruction
143   // as one at the end of the MBB.
144   // Number of instructions times typical instruction size.
145   InstOffset += HII->nonDbgBBSize(&B) * HEXAGON_INSTR_SIZE;
146 
147   MachineBasicBlock *TBB = NULL, *FBB = NULL;
148   SmallVector<MachineOperand, 4> Cond;
149 
150   // Try to analyze this branch.
151   if (HII->analyzeBranch(B, TBB, FBB, Cond, false)) {
152     // Could not analyze it. See if this is something we can recognize.
153     // If it is a NVJ, it should always have its target in
154     // a fixed location.
155     if (HII->isNewValueJump(&*FirstTerm))
156       TBB = FirstTerm->getOperand(HII->getCExtOpNum(&*FirstTerm)).getMBB();
157   }
158   if (TBB && &MI == &*FirstTerm) {
159     Distance = std::abs((long long)InstOffset - BlockToInstOffset[TBB])
160                 + BranchRelaxSafetyBuffer;
161     return !HII->isJumpWithinBranchRange(&*FirstTerm, Distance);
162   }
163   if (FBB) {
164     // Look for second terminator.
165     auto SecondTerm = std::next(FirstTerm);
166     assert(SecondTerm != B.instr_end() &&
167           (SecondTerm->isBranch() || SecondTerm->isCall()) &&
168           "Bad second terminator");
169     if (&MI != &*SecondTerm)
170       return false;
171     // Analyze the second branch in the BB.
172     Distance = std::abs((long long)InstOffset - BlockToInstOffset[FBB])
173                 + BranchRelaxSafetyBuffer;
174     return !HII->isJumpWithinBranchRange(&*SecondTerm, Distance);
175   }
176   return false;
177 }
178 
179 
reGenerateBranch(MachineFunction & MF,DenseMap<MachineBasicBlock *,unsigned> & BlockToInstOffset)180 bool HexagonBranchRelaxation::reGenerateBranch(MachineFunction &MF,
181       DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset) {
182   bool Changed = false;
183 
184   for (auto &B : MF) {
185     for (auto &MI : B) {
186       if (!MI.isBranch() || !isJumpOutOfRange(MI, BlockToInstOffset))
187         continue;
188       DEBUG(dbgs() << "Long distance jump. isExtendable("
189                    << HII->isExtendable(&MI) << ") isConstExtended("
190                    << HII->isConstExtended(&MI) << ") " << MI);
191 
192       // Since we have not merged HW loops relaxation into
193       // this code (yet), soften our approach for the moment.
194       if (!HII->isExtendable(&MI) && !HII->isExtended(&MI)) {
195         DEBUG(dbgs() << "\tUnderimplemented relax branch instruction.\n");
196       } else {
197         // Find which operand is expandable.
198         int ExtOpNum = HII->getCExtOpNum(&MI);
199         MachineOperand &MO = MI.getOperand(ExtOpNum);
200         // This need to be something we understand. So far we assume all
201         // branches have only MBB address as expandable field.
202         // If it changes, this will need to be expanded.
203         assert(MO.isMBB() && "Branch with unknown expandable field type");
204         // Mark given operand as extended.
205         MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
206         Changed = true;
207       }
208     }
209   }
210   return Changed;
211 }
212